Compilation of selected papers published on Permian topics in 2023

Stratigraphy and sedimentology

Borrelli M., Perri E., Morsilli M. & Critelli S. (2023). Late Permian-Triassic sedimentary evolution of the Southern Adriatic area based on wells and cores analysis. Marine and Petroleum Geology, 150, 106154. https://doi.org/10.1016/j.marpetgeo.2023.106154

Calvo González D., Beauchamp B. & Henderson C.M. (2023). High-frequency sequence stratigraphy of Pennsylvanian-Lower Permian carbonate successions of the Robledo Mountains, New Mexico and the Carnic Alps, Austria: a record of the acme and demise of the late Palaeozoic ice age. Facies, 69(1), 2. https://doi.org/10.1007/s10347-022-00658-z

Chernykh V.V., Henderson C.M., Kutygin R.V., Filimonova T.V., Sungatullina G.M., Afanasieva M.S., Isakova T.N., Sungatullin R.K., Stephenson M.H., Angiolini L. & Chuvashov B.I. (2023). Global Stratotype Section and Point (GSSP) for the base-Artinskian Stage (Lower Permian). Episodes Journal of International Geoscience, 46(4), 623-651. https://doi.org/10.18814/epiiugs/2023/023015

Cornamusini G., Zurli L., Liberato G.P., Corti V., Gulbranson E.L., Perotti M. & Sandroni S. (2023). A lithostratigraphic reappraisal of a Permian-Triassic fluvial succession at Allan Hills (Antarctica) and implications for the terrestrial end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 627, 111741. https://doi.org/10.1016/j.palaeo.2023.111741

Criniti S. (2023). Detrital modes of buried Permian sandstones of the Puglia 1 well (Puglia Region, Southern Italy). Rendiconti Online della Società Geologica Italiana, 59, 119-124. https://dx.doi.org/10.3301/ROL.2023.19

Fang C., Zhang C., Bai X., Tang H., Chao J. & Wei H. (2023). Facies and Carbon Isotope Variations during the Kungurian (Early Permian) in the Chihsia Formation in the Lower Yangtze Region of South China. Minerals, 13(4), 551. https://doi.org/10.3390/min13040551

Fyfe L.J.C. & Underhill J.R. (2023). A regional geological overview of the Upper Permian Zechstein Supergroup (Z1 to Z3) in the SW margin of the Southern North Sea and Onshore Eastern England. Journal of Petroleum Geology, 46(3), 223-256. https://doi.org/10.1111/jpg.12837

Garland J., Tiltman C. & Inglis C. (2023). Sedimentology, palaeogeography and diagenesis of the upper Permian (Z2) Hauptdolomit Formation on the southern margin of the Mid North Sea High and implications for reservoir prospectivity. Journal of Petroleum Geology, 46(3), 329-360. https://doi.org/10.1111/jpg.12841

Hou Z.S., Chen S.Y. & Liang Z. (2023). Sedimentary features and sequence stratigraphy of the successions around the Carboniferous–Permian boundary in the Ordos Basin: links to glacial and volcanic impacts. Journal of Palaeogeography, 12(3), 358-383. https://doi.org/10.1016/j.jop.2023.04.001

Ives L.R.W. & Isbell J.L. (2023). Lithofacies and sequence stratigraphic analysis of the glaciomarine lower Wynyard Formation (Pennsylvanian–early Permian, Tasmanian Basin). Sedimentary Geology, 455, 106482. https://doi.org/10.1016/j.sedgeo.2023.106482

Korngreen D., Orlov-Labkovsky O., Zilberman T. & Stephenson M.H. (2023). Time Constrains and the Tectono-Sedimentary Setting of the Permian Sequence in Israel: Insights from Pleshet-1 and David-1 Boreholes, Western Israel. Stratigraphy and Geological Correlation, 31(6), 571–592. https://doi.org/10.1134/S0869593823060047

Ma R., Yang J., Wang Y., Yan J. & Liu J. (2023). Estimating the magnitude of early Permian relative sea-level changes in southern North China. Global and Planetary Change, 221, 104036. https://doi.org/10.1016/j.gloplacha.2023.104036

Olivier M., Bourquin S., Desaubliaux G., Ducassou C., Rossignol C., Daniau G. & Chaney D. (2023). The Late Paleozoic Ice Age in western equatorial Pangea: Context for complex interactions among aeolian, alluvial, and shoreface sedimentary environments during the Late Pennsylvanian–Early Permian. Gondwana Research, 124, 305-338. https://doi.org/10.1016/j.gr.2023.07.004

Pickering J., Morris N., Driskill B., Auchter N. & Laycock D. (2023). A new isochron for stratigraphic correlation in the Permian Delaware Basin and beyond. Marine and Petroleum Geology, 157, 106502. https://doi.org/10.1016/j.marpetgeo.2023.106502

Ravidà D.C., Caracciolo L., Heins W.A. & Stollhofen H. (2023). Towards an improved discrimination and correlation of Permian-Lower Triassic sediments in Central Europe: A chemostratigraphic approach. Sedimentary Geology, 452, 106408. https://doi.org/10.1016/j.sedgeo.2023.106408

Shen S., Zhang Y., Yuan D., Xu H., Ju Q., Zhang H., Zheng Q., Luo M. & Hou Z. (2023). Integrative Permian stratigraphy, biotas, paleogeographical and paleoclimatic evolutions of the Qinghai-Tibetan Plateau and its surrounding areas. Science China Earth Sciences, 1-45. https://doi.org/10.1007/s11430-023-1126-3

Shen S.Z., Yuan D.X., Zhang Y.C., Charles M.H., Zheng Q.F., Zhang H., Zhang M., Dai Y., Xu H.P., Wang W.Q., Li Q., Wang Y, Wang X.D., Mu L., Ramezani J., Erwin D.H., Angiolini L., Zhang F.F., Hou Z.S., Chen J., Zhang X.Y., Zhang S.H., Wu Q., Pan Y.X., Stephenson M. & Mei S.L. (in press). Redefinition of the Global Stratotype Section and Point (GSSP) and new Standard Auxiliary Boundary Stratotype (SABS) for the base of Wuchiapingian Stage (Lopingian Series, Permian) in South China. Episodes Journal of International Geoscience, 47(1), 147-177. https://doi.org/10.18814/epiiugs/2023/023023

Wu S., Han C., Golding M.L., Chen Z.Q., Lyu Z. & Zhao L. (2023). Integrated biochemostratigraphy of the Permian-Triassic boundary interval and Lower Triassic succession in the eastern Cimmerian continent (Baoshan block, West Yunnan, southwest China). Palaeogeography, Palaeoclimatology, Palaeoecology, 627, 111711. https://doi.org/10.1016/j.palaeo.2023.111711

Geochronology and astrochronology

Hua F., Shao L., Zhang T., Bond D.P., Wang X., Wang J., Yan Z., Lu J. & Hilton J. (2023). An astronomical timescale for the Permian-Triassic mass extinction reveals a two-step, million-year-long terrestrial crisis in South China. Earth and Planetary Science Letters, 605, 118035. https://doi.org/10.1016/j.epsl.2023.118035

Huang R., Jiang F., Chen D., Qiu R., Hu T., Fang L., Hu M., Wu G., Zhang C., Lv J., Wu Y. & Huang L. (2023). Astrochronology and carbon-isotope stratigraphy of the Fengcheng Formation, Junggar Basin: Terrestrial evidence for the Carboniferous-Permian Boundary. Gondwana Research, 116, 1-11. https://doi.org/10.1016/j.gr.2022.12.016

Mory A.J., Crowley J., Backhouse J., Nicoll R.S. & Gorter J.D. (2023). Early Permian zircon ages from the P. confluens and P. pseudoreticulata spore-pollen zones in the southern Bonaparte and Canning basins, Northwestern Australia. Australian Journal of Earth Sciences, 70(4), 494-509. https://doi.org/10.1080/08120099.2023.2185676

Rochín-Bañaga H., Gastaldo R.A., Davis D.W., Neveling J., Kamo S.L., Looy C.V. & Geissman J.W. (2023). U-Pb dating of pedogenic calcite near the Permian− Triassic boundary, Karoo Basin, South Africa. GSA Bulletin, 136(3-4), 1689-1700. https://doi.org/10.1130/B36968.1

Wei R., Jin Z., Zhang R., Li M., Hu Y., He X. & Yuan S. (2023). Orbitally-paced coastal sedimentary records and global sea-level changes in the Early Permian. Earth and Planetary Science Letters, 620, 118356. https://doi.org/10.1016/j.epsl.2023.118356

Geochemical proxies and palaeoclimate

Chen J., Sun G., Lu B., Ma R.Y., Xiao Z., Cai Y.F., Zhang H., Shen S.Z., Zhang Z. & Feng Z. (2023). Inconsistent mercury records from terrestrial upland to coastal lowland across the Permian-Triassic transition. Earth and Planetary Science Letters, 614, 118195. https://doi.org/10.1016/j.epsl.2023.118195

Edward O., Paul A.N., Bucher H., Vérard C., Adatte T., Sonke J.E., Schaltegger U. & Vennemann T. (2023). Timing and provenance of volcanic fluxes around the Permian‐Triassic boundary mass extinction in South China: U‐Pb Zircon Geochronology, Volcanic Ash Geochemistry and Mercury Isotopes. Geochemistry, Geophysics, Geosystems, 24(6), e2023GC010912. https://doi.org/10.1029/2023GC010912

Forte G., Preto N., Kustatscher E. & Looy C.V. (2023). Kungurian (Cisuralian) conifers and environmental changes: a negative δ13C shift in the flora of Tregiovo (Northern Italy). Palaeoworld. https://doi.org/10.1016/j.palwor.2023.08.004

Jiao Y., Zhou L., Algeo T.J., Feng L., Shen J., Hu Y., Liu J., Han Y. & Hou X. (2023). Zirconium and neodymium isotopes record intensive felsic volcanism in South China region during the Permian-Triassic boundary crisis. Chemical Geology, 636, 121653. https://doi.org/10.1016/j.chemgeo.2023.121653

Li R., Wu N., Shen S.Z., Wang X.L., Chen H., Algeo T.J., Zhang H. & Zhang F. (2023). A rapid onset of ocean acidification associated with the end-Permian mass extinction. Global and Planetary Change, 225, 104130. https://doi.org/10.1016/j.gloplacha.2023.104130

Liu C., Jiang T., Yang Y. & Ma J. (2023). Temporal and spatial variations of high-resolution strontium, carbon, and oxygen isotopic chemostratigraphy at the end-Permian crisis boundary in South China. Gondwana Research, 113, 89-101. https://doi.org/10.1016/j.gr.2022.10.015

Lounejeva E., Steadman J.A., Large R.R., Grice K., Olin P. & Belousov I. (2023). Lithogeochemical and sulfide trace-element systematics across the Permian–Triassic boundary, Perth Basin, Western Australia: constraints on the shallow marine environment during the end-Permian mass extinction. Australian Journal of Earth Sciences, 70(5), 716-730. https://doi.org/10.1080/08120099.2023.2200476

Manda B., Kachira R., Mohamed H. & George S.C. (2023). The organic geochemistry of Permian high latitude sediments in two boreholes in the southern Sydney Basin, New South Wales, Australia. Marine and Petroleum Geology, 154, 106316. https://doi.org/10.1016/j.marpetgeo.2023.106316

Müller J., Sun Y.D., Yang F., Regelous M. & Joachimski M.M. (2023). Manganous water column in the Tethys Ocean during the Permian-Triassic transition. Global and Planetary Change, 222, 104067. https://doi.org/10.1016/j.gloplacha.2023.104067

Shen J., Chen J., Yu J., Algeo T.J., Smith R.M., Botha J., Frank T.D., Fielding C.R., Ward P.D. & Mather T.A. (2023). Mercury evidence from southern Pangea terrestrial sections for end-Permian global volcanic effects. Nature Communications, 14(1), 6. https://doi.org/10.1038/s41467-022-35272-8

Song H., Algeo T.J., Song H., Tong J., Wignall P.B., Bond D.P., Zheng W., Chen X., Romaniello S.J., Wei H. & Anbar A.D. (2023). Global oceanic anoxia linked with the Capitanian (Middle Permian) marine mass extinction. Earth and Planetary Science Letters, 610, 118128. https://doi.org/10.1016/j.epsl.2023.118128

Song Q., Hong H., Algeo T.J., Fang Q., Zhao C., Liu C. & Xu Y. (2023). Clay mineralogy mediated by pH and chemical weathering intensity of Permian–Triassic boundary K-bentonites at Dongpan (Guangxi, South China). Chemical Geology, 617, 121262. https://doi.org/10.1016/j.chemgeo.2022.121262

Sun R., Liu Y., Sonke J.E., Feifei Z., Zhao Y., Zhang Y., Chen J., Liu C.Q., Shen S., Anbar A.D. & Zheng W. (2023). Mercury isotope evidence for marine photic zone euxinia across the end-Permian mass extinction. Communications Earth & Environment, 4(1), 159. https://doi.org/10.1038/s43247-023-00821-6

Wang Y., Lu J., Yang M., Yager J.A., Greene S.E., Sun R., Mu X., Bian X., Zhang P., Shao L. & Hilton J. (2023). Volcanism and wildfire associated with deep-time deglaciation during the Artinskian (early Permian). Global and Planetary Change, 225, 104126. https://doi.org/10.1016/j.gloplacha.2023.104126

Wang W.Q., Zhang F., Zhang S., Cui Y., Zheng Q.F., Zhang Y.C., Yuan D.X., Zhang H., Xu Y.G. & Shen S.Z. (2023). Ecosystem responses of two Permian biocrises modulated by CO2 emission rates. Earth and Planetary Science Letters, 602, 117940. https://doi.org/10.1016/j.epsl.2022.117940

Wu Y., Cui Y., Chu D., Song H., Tong J., Dal Corso J. & Ridgwell A. (2023). Volcanic CO2 degassing postdates thermogenic carbon emission during the end-Permian mass extinction. Science advances, 9(7), eabq4082. https://doi.org/10.1126/sciadv.abq4082

Xu G., Shen J., Algeo T.J., Yu J., Feng Q., Frank T.D., Fielding C.R., Yan J., Deconink J.F. & Lei Y. (2023). Limited change in silicate chemical weathering intensity during the Permian–Triassic transition indicates ineffective climate regulation by weathering feedbacks. Earth and Planetary Science Letters, 616, 118235. https://doi.org/10.1016/j.epsl.2023.118235

Zhang B., Ca, J., Mu L., Yao S., Hu W., Huang H., Lang X. & Liao Z. (2023). The Permian chert event in South China: new geochemical constraints and global implications. Earth-Science Reviews, 104513. https://doi.org/10.1016/j.earscirev.2023.104513

Palaeoecology and palaeoenvironments

Galloway J.M. & Lindström S. (2023). Impacts of large-scale magmatism on land plant ecosystems. Elements, 19(5), 289-295. https://doi.org/10.2138/gselements.19.5.289

Ge Y., Algeo T.J., Wen H., Zhang C., Ma Y. & Lian C. (2023). Dynamics of Tethyan marine de‑oxygenation and relationship to SNP cycles during the Permian-Triassic boundary crisis. Earth-Science Reviews, 104576. https://doi.org/10.1016/j.earscirev.2023.104576

Huang Y., Chen Z.Q., Roopnarine P.D., Benton M.J., Zhao L., Feng X. & Li Z. (2023). The stability and collapse of marine ecosystems during the Permian-Triassic mass extinction. Current Biology, 33(6), 1059-1070. https://doi.org/10.1016/j.cub.2023.02.007

Jiao S., Zhang H., Cai Y., Chen J., Feng Z. & Shen S. (2023). Collapse of tropical rainforest ecosystems caused by high-temperature wildfires during the end-Permian mass extinction. Earth and Planetary Science Letters, 614, 118193. https://doi.org/10.1016/j.epsl.2023.118193

Júnior M.G.E., da Conceição D.M. & Iannuzzi R. (2023). Influence of the abiotic environment on Permian woods from northwestern Gondwana. Review of Palaeobotany and Palynology, 316, 104947. https://doi.org/10.1016/j.revpalbo.2023.104947

Jurigan I., Ricardi-Branco F. & Dentzien-Dias P. (2023). Permian Western Gondwana food chain elucidated by coprolites from the Corumbataí Formation (Paraná Basin, Brazil). Journal of South American Earth Sciences, 127, 104414. https://doi.org/10.1016/j.jsames.2023.104414

Kammerer C.F., Viglietti P.A., Butler E. & Botha J. (2023). Rapid turnover of top predators in African terrestrial faunas around the Permian-Triassic mass extinction. Current Biology, 33(11), 2283-2290. https://doi.org/10.1016/j.cub.2023.04.007

Li M., Tian L., Wignall P.B., Dai X., Lin W., Cai Q. & Song H. (2023). Expansion of microbial-induced carbonate factory into deeper water after the Permian-Triassic mass extinction. Global and Planetary Change, 230, 104274. https://doi.org/10.1016/j.gloplacha.2023.104274

Liu F., Peng H., Marshall J.E., Lomax B.H., Bomfleur B., Kent M.S., Fraser W.Y. & Jardine P.E. (2023). Dying in the Sun: Direct evidence for elevated UV-B radiation at the end-Permian mass extinction. Science advances, 9(1), eabo6102. https://doi.org/10.1126/sciadv.abo6102

Ma F.J., Luo D.D., Liu S., Zhang C.W., Wang Q.J., Li B.X., Liu C.Y., Sun B.N. & He X. (2023). Local provincialism of late Permian plant–arthropod associations in South Cathaysia: Evidence of arthropod-mediated damages in a Wuchiapingian assemblage of South China. Journal of Asian Earth Sciences, 254, 105729. https://doi.org/10.1016/j.jseaes.2023.105729

Maahs R., Kuchle J., Rodrigues A.G., da Silva T.F., González M.B. & Erthal F. (2023). Paleoenvironmental reconstruction of the Permian coal beds in the Paraná Basin (Brazil): evidence from organic geochemical and sedimentological analyses. Journal of South American Earth Sciences, 128, 104484. https://doi.org/10.1016/j.jsames.2023.104484

Pillai S.S.K., Manoj M.C., Mathews R.P., Murthy S., Sahoo M., Saxena A., Sharma A., Pradhan S. & Kumar S. (2023). Lower Permian Gondwana sequence of Rajhara (Daltonganj Coalfield), Damodar Basin, India: floristic and geochemical records and their implications on marine ingressions and depositional environment. Environmental Geochemistry and Health, 45(10), 6923-6953. https://doi.org/10.1007/s10653-023-01517-8

Pradhan S., Goswami S., Aggarwal N., Mathews R.P., Manoj M.C., Pillai S.S.K. & Pradhan S.S. (2023). Integrative study of Permian coal-bearing horizons: biostratigraphy, palaeovegetation, and palaeoclimate in the South Karanpura Basin. Environmental Geochemistry and Health, 45(10), 6985-7010. https://doi.org/10.1007/s10653-023-01701-w

Ronchi A., Marchetti L., Klein H. & Groenewald G.H. (2023). A Middle Permian Oasis for Vertebrate and Invertebrate Life in a High-Energy Fluvial Palaeoecosystem of Southern Gondwana (Karoo, Republic of South Africa). Geosciences, 13(11), 325. https://doi.org/10.3390/geosciences13110325

Saito R., Wörmer L., Taubner H., Kaiho K., Takahashi S., Tian L., Ikeda M., Summons R.E. & Hinrichs K.U. (2023). Centennial scale sequences of environmental deterioration preceded the end-Permian mass extinction. Nature Communications, 14(1), 2113. https://doi.org/10.1038/s41467-023-37717-0

Trümper S., Vogel B., Germann S., Werneburg R., Schneider J.W., Hellwig A., Linnemann U., Hofmann M. & Rößler R. (2023). Decoding the drivers of deep‐time wetland biodiversity: insights from an early Permian tropical lake ecosystem. Palaeontology, 66(3), e12652. https://doi.org/10.1111/pala.12652

Trümper S., Rößler R., Morelli C., Krainer K., Karbacher S., Vogel B., Antonelli M., Sacco E. & Kustatscher E. (2023). a Fossil Forest from Italy Reveals that Wetland Conifers Thrived in Early Permian Peri-Tethyan Pangea. Palaios, 38(10), 407-435. https://doi.org/10.2110/palo.2023.015

Valle F., Nowak H., Kustatscher E., Erkens S., Roghi G., Morelli C., Krainer K., Preto N. & Hartkopf-froeder C. (2023). Reconstructing Kungurian (Cisuralian, Permian) terrestrial environments within a megacaldera in the Southern Alps (N-Italy) using lithofacies analysis, palynology and stable carbon isotopes. Rivista Italiana di Paleontologia e Stratigrafia, 129(1), 1-24. https://doi.org/10.54103/2039-4942/17938

Wang H., He W., Xiao Y., Yang T., Zhang K., Wu H., Huang Y., Peng X. & Wu S. (2023). Stagewise collapse of biotic communities and its relations to oxygen depletion along the north margin of Nanpanjiang Basin during the Permian–Triassic transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 621, 111569. https://doi.org/10.1016/j.palaeo.2023.111569

Wu J., Chu D., Luo G., Wignall P.B., Algeo T.J. & Xie S. (2023). Stepwise deforestation during the Permian-Triassic boundary crisis linked to rising temperatures. Earth and Planetary Science Letters, 620, 118350. https://doi.org/10.1016/j.epsl.2023.118350

Zhang P., Yang M., Lu J., Bond D.P., Zhou K., Xu X., Wang Y., He Z., Bian X., Shao L. & Hilton J. (2023). End-Permian terrestrial ecosystem collapse in North China: evidence from palynology and geochemistry. Global and Planetary Change, 222, 104070. https://doi.org/10.1016/j.gloplacha.2023.104070

Palaeogeography and tectonics

Abdelmalak M.M., Gac S., Faleide J.I., Shephard G.E., Tsikalas F., Polteau S., Zastrozhnov D. & Torsvik T.H. (2023). Quantification and restoration of the pre‐drift extension across the NE Atlantic conjugate margins during the mid‐Permian‐early Cenozoic multi‐rifting phases. Tectonics, 42(1), e2022TC007386. https://doi.org/10.1029/2022TC007386

Beccaletto L. & Bourquin S. (2023). The Brécy depocenter as part of a new northern Massif Central Carboniferous–Permian Basin (France). Comptes Rendus. Géoscience, 355(S2), 1-28. https://doi.org/10.5802/crgeos.246

Chang R., Neubauer F., Liu Y., Genser J., Guan Q., Huang Q. & Yuan S. (2023). Permian to Triassic protolith ages of type locality eclogites in the Eastern Alps: Implications for the opening of the Meliata back-arc basin. Geology, 51(6), 537-542. https://doi.org/10.1130/G50903.1

Ershadinia M., Ghaemi F. & Homam S.M. (2023). Permian to recent tectonic evolution of the Palaeotethys suture zone in NE Iran. Journal of Asian Earth Sciences, 251, 105658. https://doi.org/10.1016/j.jseaes.2023.105658

Grundvåg S.A., Strand M.S., Paulsen C., Simonsen B.T., Røstad J., Mørk A. & Mørk M.B.E. (2023). The Hambergfjellet Formation on Bjørnøya – sedimentary response to early Permian tectonics on the Stappen High. Norwegian Journal of Geology 103, 202302. https://dx.doi.org/10.17850/njg103-1-2

Hou Z.S., Shen S.Z., Henderson C.M., Yuan D.X., Zhang Y.C. & Fan J.X. (2023). Cisuralian (Early Permian) paleogeographic evolution of South China Block and sea-level changes: Implications for the global Artinskian Warming Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 613, 111395. https://doi.org/10.1016/j.palaeo.2023.111395

Li S., Li Y., Zhang Y., Zhou Z., Guo J. & Weng A. (2023). Remnant of the late Permian superplume that generated the Siberian Traps inferred from geomagnetic data. Nature Communications, 14(1), 1311. https://doi.org/10.1038/s41467-023-37053-3

Liu Z., Zhou Q., Liu K., Wang Y., Chen D., Chen Y. & Xiao L. (2023). Sedimentary features and paleogeographic evolution of the middle Permian trough basin in Zunyi, Guizhou, South China. Journal of Earth Science, 34(6), 1803-1815. https://doi.org/10.1007/s12583-021-1406-2

Petri B., Wijbrans J.R., Mohn G., Manatschal G. & Beltrando M. (2023). Thermal evolution of Permian post-orogenic extension and Jurassic rifting recorded in the Austroalpine basement (SE Switzerland, N Italy). Lithos, 444, 107124. https://doi.org/10.1016/j.lithos.2023.107124

Shen M., Dai S., Nechaev V.P., French D., Graham I.T., Liu S., Chekryzhov I.Y., Tarasenko I.A. & Zhang S. (2023). Provenance changes for mineral matter in the latest Permian coals from western Guizhou, southwestern China, relative to tectonic and volcanic activity in the Emeishan Large Igneous Province and Paleo-Tethys region. Gondwana Research, 113, 71-88. https://doi.org/10.1016/j.gr.2022.10.011

Shu T., Jiang Y., Schulmann K., Yu Y., Yuan C., Wang S., Li Z. & Kong L. (2023). Structure, geochronology, and petrogenesis of Permian peraluminous granite dykes in the southern Chinese Altai as indicators of Altai–East Junggar convergence. GSA Bulletin, 135(5-6), 1243-1264. https://doi.org/10.1130/B36408.1

Wang B., Xie C.M., Spier C.A., Dong Y.S., Yu Y.P., Song Y.H., Duan M.L. & Yakymchuk C. (2023). Middle Permian magmatism in the Tangjia-Sumdo region, Tibet: evidence for intra-oceanic subduction. International Geology Review, 65(4), 563-584. https://doi.org/10.1080/00206814.2022.2056718

Wang B., Xie C.M., Yakymchuk C., Dong Y.S., Song Y.H. & Duan M.L. (2023). A greenstone belt in southeast Tibet: An accreted middle–late Permian oceanic plateau. Geoscience Frontiers, 14(3), 101534. https://doi.org/10.1016/j.gsf.2023.101534

Wu C., Zuza A.V., Levy D.A., Li J. & Ding L. (2023). Discovery of Permian–Triassic eclogite in northern Tibet establishes coeval subduction erosion along an~ 3000-km-long arc. Geology, 51(9), 833-838. https://doi.org/10.1130/G51223.1

Zhang H., Qiu L., Yan D.P., Zhao Z., Cai K., Zhang J., Chen S., Li Y., Song Y., Zheng Y., Sun S., Gong F. & Ariser S. (2023). Late-Permian subduction-to-collision transition and closure of Paleo-Asian Ocean in eastern Central Asian Orogenic Belt: Evidence from borehole cores in the Songliao Basin, Northeast China. Gondwana Research, 122, 74-92. https://doi.org/10.1016/j.gr.2023.06.004

Zhao L., Tang H., Mitchell R.N., Li Q.L., Zhou X.W. & Zhai M.G. (2023). The joining of North and South China during the Permian: Coherent metamorphic evidence from East Asia orogenesis. Tectonics, 42(8), e2023TC007916. https://doi.org/10.1029/2023TC007916

Vertebrate palaeontology (excluding conodonts)

Bakaev A.S. (2023). Revision of Permian Ray-Finned Fishes from the Kazankovo-Markino Formation of the Kuznetsk Basin. Paleontological Journal, 57(3), 335-342. https://doi.org/10.1134/S0031030123030036

Bakaev A.S., Johanson Z. & LeBlanc A. (2023). The dental system of †Kazanichthys viatkensis (Actinopterygii, Acrolepididae) from the middle Permian of European Russia: palaeobiological and palaeoecological inferences. Papers in Palaeontology, 9(4), e1512. https://doi.org/10.1002/spp2.1512

Bendel E.M., Kammerer C.F., Smith R.M. & Fröbisch J. (2023). The postcranial anatomy of Gorgonops torvus (Synapsida, Gorgonopsia) from the late Permian of South Africa. PeerJ, 11, e15378. https://doi.org/10.7717/peerj.15378

Calábková G., Březina J., Nosek V. & Madzia D. (2023). Synapsid tracks with skin impressions illuminate the terrestrial tetrapod diversity in the earliest Permian of equatorial Pangea. Scientific Reports, 13(1), 1130. https://doi.org/10.1038/s41598-023-27939-z

Chen J. & Liu J. (2023). A late Permian archosauriform from Xinjiang shows evidence of parasagittal posture. The Science of Nature, 110(1), 1. https://doi.org/10.1007/s00114-022-01823-8

Dankina D., Spiridonov A., Raczyński P., Radzevičius S. & Antczak M. (2023). The first Late Permian fish fossils from Leszczyna quarry in South-West Poland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 114(1-2), 65-74. https://doi.org/10.1017/S1755691023000051

Groenewald D.P., Krüger A., Day M.O., Penn-Clarke C.R., Hancox P.J. & Rubidge B.S. (2023). Unique trackway on Permian Karoo shoreline provides evidence of temnospondyl locomotory behaviour. Plos one, 18(3), e0282354. https://doi.org/10.1371/journal.pone.0282354

Kumpitak S., Hongsresawat S., Paejaroen P. & Suraprasit K. (2023). The First Record of a Ray-finned Fish (Actinopterygii, Palaeoniscidae) from the Lower to Middle Permian of Tak Fa Formation in Phetchabun, Central Thailand. Tropical Natural History, (7), 139-150. https://li01.tci-thaijo.org/index.php/tnh/article/view/258820

Maho T., Bevitt J.J. & Reisz R.R. (2023). New specimens of the Early Permian apex predator Varanops brevirostris at Richards Spur, Oklahoma, with histological information about its growth pattern. PeerJ, 11, e14898. https://doi.org/10.7717/peerj.14898

Matamales‐Andreu R., Mujal E., Galobart À. & Fortuny J. (2023). A new medium‐sized moradisaurine captorhinid eureptile from the Permian of Mallorca (Balearic Islands, western Mediterranean) and correlation with the co‐occurring ichnogenus Hyloidichnus. Papers in Palaeontology, 9(3), e1498. https://doi.org/10.1002/spp2.1498

Norton L.A., Abdala F. & Benoit J. (2023). Craniodental anatomy in Permian–Jurassic Cynodontia and Mammaliaformes (Synapsida, Therapsida) as a gateway to defining mammalian soft tissue and behavioural traits. Philosophical Transactions of the Royal Society B, 378(1880), 20220084. https://doi.org/10.1098/rstb.2022.0084

Rmich A., Lagnaoui A., Hminna A., Saber H., Zouheir T. & Lallensack J.N. (2023). Captorhinid trackways from mid-to Late Permian red beds in Morocco: Implications for locomotion and the palaeobiogeography of northwest Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 625, 111700. https://doi.org/10.1016/j.palaeo.2023.111700

Wen W., Zhang Q., Kriwet J., Hu S., Zhou C., Huang J., Cui X., Min X. & Benton M.J. (2023). First occurrence of hybodontid teeth in the Luoping Biota (Middle Triassic, Anisian) and recovery of the marine ecosystem after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 617, 111471. https://doi.org/10.1016/j.palaeo.2023.111471

Werneburg R., Witzmann F., Schneider J.W. & Rößler R. (2023). A new basal zatracheid temnospondyl from the Early Permian Chemnitz Fossil Lagerstätte, central-east Germany. PalZ, 97(1), 105-128. https://doi.org/10.1007/s12542-022-00624-8

Conodonts, foraminifera, radiolarians, algae and microbes

Afanasieva M.S. (2023). Radiolarians of the Kungurian Stage of the Lower Permian in the South Urals of Russia. Paleontological Journal, 57(7), 715-743. https://doi.org/10.1134/S0031030123070018

Chen A.F., Zhang Y., Golding M.L., Wu H.T. & Liu J.Q. (2023). Upper Changhsingian to lower Anisian conodont biostratigraphy of the Datuguan section, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 616, 111470. https://doi.org/10.1016/j.palaeo.2023.111470

Duan X. (2023). Automatic identification of conodont species using fine-grained convolutional neural networks. Frontiers in Earth Science, 10, 1046327. https://doi.org/10.3389/feart.2022.1046327

Foster W.J., Asatryan G., Rauzi S., Botting J.P., Buchwald S.Z., Lazarus D.B., Renaudie J. & Kiessling W. (2023). Response of Siliceous Marine Organisms to the Permian‐Triassic Climate Crisis Based on New Findings from Central Spitsbergen, Svalbard. Paleoceanography and Paleoclimatology, 38(12), e2023PA004766. https://doi.org/10.1029/2023PA004766

Gorozhanina E.N., Gorozhanin V.M., Isakova T.N. & Filimonova T.V. (2023). Lithofacies and Bionomic Specificity of the Fossil Assemblages in the Lower Permian Deposits of the Yuryuzan–Ai Depression, Southern Urals (by the Example of the Mechetlino Section). Stratigraphy and Geological Correlation, 31(3), 135-158. https://doi.org/10.1134/S0869593823030036

Ito T., Muto S. & Iwamoto N. (2023). Permian and Triassic Microfossils from Chert Pebbles Within the Lower Cretaceous Choshi Group in the Choshi Geopark, Central Japan: Extending the Age Range of Fossil in Geoparks. Geoheritage, 15(4), 130. https://doi.org/10.1007/s12371-023-00895-w

Kurihara T., Suzuki K., Ito T., Ishida H., Ueda H. & Matsuoka A. (2023). Guadalupian–Lopingian (Middle–Late Permian) radiolarians from clastic rocks and zircon U–Pb ages of intercalated tuff and tuffaceous sandstone on Sado Island, central Japan. Revue de Micropaléontologie, 100750. https://doi.org/10.1016/j.revmic.2023.100750

Lara-Peña R.A., Blanco-Ferrera S., Torres-Martínez M.A. & Navas-Parejo P. (2023). CAI and microtextures of low-grade metamorphosed conodonts related to lithological and geological controls. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.06.010

Metcalfe I. (2023). Lower Permian (late Kungurian) conodonts from the Sibumasu Terrane, Malaysia: paleoecological, paleobiogeographical and tectonic implications. Geological Magazine, 160(6), 1177-1192. https://doi.org/10.1017/S0016756823000328

Muto S., Takahashi S. & Murayama M. (2023). Conodont biostratigraphy of a Carboniferous-Permian boundary section in siliceous successions of pelagic Panthalassa revealed by X-ray computed microtomography. Frontiers in Earth Science, 11, 1162023. https://doi.org/10.3389/feart.2023.1162023

Wang L., Sun Y., Wignall P.B., Xing A., Chen Z. & Lai X. (2023). The Permian-Triassic Merrillina (conodont) in South China and its ecological significance. Marine Micropaleontology, 180, 102228. https://doi.org/10.1016/j.marmicro.2023.102228

Wang Y., Yang J., Henderson C.M., Yuan D., Ma R. & Liu J. (2023). Carboniferous-Permian high-resolution conodont biostratigraphy and paleoclimate change in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 629, 111782. https://doi.org/10.1016/j.palaeo.2023.111782

Zheng J., Jin X., Huang H. & Yan Z. (2023). Late Permian radiolarians from the ‘Middle‐Upper Devonian’in the Paqiu area of the Changning‐Menglian Belt, western Yunnan, China and their bearings on analysing the remains of the Palaeo‐Tethys. Geological Journal, 58(3), 998-1011. https://doi.org/10.1002/gj.4639

Brachiopods, bivalves and other invertebrates

Allen B.J., Clapham M.E., Saupe E.E., Wignall P.B., Hill D.J. & Dunhill A.M. (2023). Estimating spatial variation in origination and extinction in deep time: a case study using the Permian–Triassic marine invertebrate fossil record. Paleobiology, 49(3), 509-526. https://doi.org/10.1017/pab.2023.1

Biakov A.S. & Mazaev A.V. (2023). The First Finds of the Most Ancient Oyster-Like Bivalves of the Genus Prospondylus Zimmermann (Pectinidae, Prospondylidae) in the Lower Permian of the Southern Cis-Urals (Russia). Paleontological Journal, 57(3), 278-287. https://doi.org/10.1134/S0031030123030048

Boudinot B.E., Yan E.V., Prokop J., Luo X.Z. & Beutel R.G. (2023). Permian parallelisms: reanalysis of †Tshekardocoleidae sheds light on the earliest evolution of the Coleoptera. Systematic Entomology, 48(1), 69-96. https://doi.org/10.1111/syen.12562

Deregnaucourt I., Bardin J., Villier L., Julliard R. & Béthoux O. (2023). Disparification and extinction trade-offs shaped the evolution of Permian to Jurassic Odonata. Iscience, 26(8). https://doi.org/10.1016/j.isci.2023.107420

Gui S.M., Liu Y.C. & Tian L. (2023). Evolution of insect diversity in the Permian and Triassic. Palaeoentomology, 6(5), 472-481. https://doi.org/10.11646/palaeoentomology.6.5.6

Guo Z., Flannery-Sutherland J.T., Benton M.J. & Chen Z.Q. (2023). Bayesian analyses indicate bivalves did not drive the downfall of brachiopods following the Permian-Triassic mass extinction. Nature Communications, 14(1), 5566. https://doi.org/10.1038/s41467-023-41358-8

Hopkins M.J., Wagner P.J. & Jordan K.J. (2023). Permian trilobites and the applicability of the “living fossil” concept to extinct clades. Frontiers in Ecology and Evolution, 11, 1166126. https://doi.org/10.3389/fevo.2023.1166126

Huang Y., Tong J., Tian L., Song H., Chu D., Miao X. & Song T. (2023). Temporal shell-size variations of bivalves in South China from the Late Permian to the early Middle Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 609, 111307. https://doi.org/10.1016/j.palaeo.2022.111307

Ji X., Huang Y., Sun X., Qiu X., Yang H., Tong J., Yi X. & Tian L. (2023). Ostracodal evolution during the Permian–Triassic transition at the Youping section of the Nanpanjiang Basin. Frontiers in Ecology and Evolution, 11, 1147335. https://doi.org/10.3389/fevo.2023.1147335

Khramov A.V., Foraponova T. & Węgierek P. (2023). The earliest pollen-loaded insects from the Lower Permian of Russia. Biology Letters, 19(3), 20220523. https://doi.org/10.1098/rsbl.2022.0523

Kutygin R.V. (2023). Shell ontogeny of the type species of the genus Neouddenites (Ammonoidea, Medlicottiidae) from the Kungurian of Western Verkhoyanie. Paleontological Journal, 57(5), 507-515. https://doi.org/10.1134/S0031030123050039

Kutygin R.V., Kilyasov A.N. & Biakov A.S. (2023, May). The first record of the goniatite genus Paramexicoceras in the Changhsingian deposits of the Upper Permian in Northeastern Asia. Doklady Earth Sciences, 509(1), 144-147. https://doi.org/10.1134/S1028334X22601936

Lee S., Shi G.R., Runnegar B. & Waterhouse J.B. (2023). Kungurian (Cisuralian/Early Permian) brachiopods from the Snapper Point Formation, southern Sydney Basin, southeastern Australia. Alcheringa: An Australasian Journal of Palaeontology, 47(1), 67-108. https://doi.org/10.1080/03115518.2022.2151045

Leonova T.B. (2023). The First Record of the Genus Atsabites Haniel (Paragastrioceratidae, Ammonoidea) from the Lower Permian of the Pamirs. Paleontological Journal, 57(1), 37-42. https://doi.org/10.1134/S0031030123010094

Leonova T.B. (2023). On the Late Paleozoic Subfamily Neopronoritinae Weyer (Pronoritidae, Ammonoidea). Paleontological Journal, 57(6), 612-622. https://doi.org/10.1134/S0031030123060059

Liang Y., Strotz L.C., Topper T.P., Holmer L.E., Budd G.E., Chen Y., Fang R., Hu Y. & Zhang Z. (2023). Evolutionary contingency in lingulid brachiopods across mass extinctions. Current Biology, 33(8), 1565-1572. https://doi.org/10.1016/j.cub.2023.02.038

Manankov I.N. (2023). Brachiopods and Biostratigraphy of the Permian Marine Boreal Basin of Mongolia. Paleontological Journal, 57(10), 1043-1103. https://doi.org/10.1134/S0031030123100027

Mukherjee D., Mondal S., Roy A., Iangrai B. & Sinha S. (2023). Palaeobiogeographic analysis of late Permian marine invertebrates from the Arunachal Himalaya, NE India. Palaeobiodiversity and Palaeoenvironments, 103(1), 129-141. https://doi.org/10.1007/s12549-022-00522-6

Nel A., Garrouste R. & Prevec R. (2023). The first Permian Gondwanan damselfly-like Protozygoptera (Insecta, Odonatoptera). Historical Biology, 35(6), 870-874. https://doi.org/10.1080/08912963.2022.2067996

Sour-Tovar F., Quiroz-Barroso S.A., & Martín-Medrano L. (2023). Middle-Upper Permian stenuroid (Asterozoa, Stenuroidea) from Las Delicias Formation, Coahuila, Mexico, relict youngest record for the group. Journal of South American Earth Sciences, 130, 104584. https://doi.org/10.1016/j.jsames.2023.104584

Palaeobotany and Palynology

Feng Z., Sui Q., Yang J.Y., Guo Y. & McLoughlin S. (2023). Specialized herbivory in fossil leaves reveals convergent origins of nyctinasty. Current Biology, 33(4), 720-726. https://doi.org/10.1016/j.cub.2022.12.043

Forte G. & Kustatscher E. (2023). Cordaites and pteridosperm-like foliage from the Kungurian (early Permian) flora of Tregiovo (Trento, NE Italy). Review of Palaeobotany and Palynology, 316, 104931. https://doi.org/10.1016/j.revpalbo.2023.104931

Forte G., Vallé F. & Kustatscher E. (2023). Unveiling the evolution of the Kungurian (Cisuralian) flora in the paleotropics (Southern Alps, Northern Italy). Review of Palaeobotany and Palynology, 104984. https://doi.org/10.1016/j.revpalbo.2023.104984

Gastaldo R.A. & Bamford M.K. (2023). The influence of taphonomy and time on the paleobotanical record of the Permian–Triassic transition of the Karoo Basin (and elsewhere). Journal of African Earth Sciences, 204, 104960. https://doi.org/10.1016/j.jafrearsci.2023.104960

Gastaldo R.A., Wan M. & Yang W. (2023). The taphonomic character, occurrence, and persistence of upper Permian–Lower Triassic plant assemblages in the mid-paleolatitudes, Bogda Mountains, western China. Palaios, 38(1), 1-21. https://doi.org/10.2110/palo.2022.025

Govind N., Sahoo M., Pillai S.S.K. & Sahu S.K. (2023). IPSD: e-repository of Permian seeds from Indian Lower Gondwana. Acta Palaeobotanica, 63(2), 151-161. https://doi.org/10.35535/acpa-2023-0010

Hagadorn J.W., Bercovici A., Fleming R.F., Whiteley K.R., Yusas M.R., Lyson T.R. & Henderson C.M. (2023). Palynology of Permian red-bed successions of Colorado and Wyoming and its influence on Laramide strata. Rocky Mountain Geology, 58(1), 1-17. https://doi.org/10.24872/rmgjournal.58.1.1

Ji X.K., Guo X.W., Yang N., Bek J., Nie T., Lu H.N. & Xu H.H. (2023). The palynology of the Permian succession in the CSDP-2 Well, South Yellow Sea, China. Palynology, 47(2), 2142860. https://doi.org/10.1080/01916122.2022.2142860

Karasev E.V., Sennikov A.G. & Mizintsev D.S. (2023). Rhizoliths and Signs of Pedogenesis in the Late Permian of Central Russia. Paleontological Journal, 57(6), 599-611. https://doi.org/10.1134/S0031030123060047

Li D., Wan M., Liu L., Hilton J., Wu Y. & Wang J. (2023). A pioneering riparian community dominated by Nystroemiaceae gymnosperms from the Guadalupian (Middle Permian) of China. Review of Palaeobotany and Palynology, 316, 104918. https://doi.org/10.1016/j.revpalbo.2023.104918

Luthardt L., Rößler R. & Stevenson D. (2023). Cycadodendron galtieri gen. nov. et sp. nov.: An Early Permian Gymnosperm Stem with Cycadalean Affinity. International Journal of Plant Sciences, 184(9), 715-732. https://doi.org/10.1086/727458

Shao L., Hua F., Wang J., Ji X., Yan Z., Zhang T., Wang X., Ma S., Jones T. & Lu H. (2023). Palynological dynamics in the late Permian and the Permian–Triassic transition in southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 619, 111540. https://doi.org/10.1016/j.palaeo.2023.111540

Shu W., Tong J., Yu J., Hilton J., Benton M.J., Shi X., Diez J.B., Wignall P.B., Chu D., Tian L., Yi Z. & Mao Y. (2023). Permian–Middle Triassic floral succession in North China and implications for the great transition of continental ecosystems. GSA Bulletin, 135(7-8), 1747-1767. https://doi.org/10.1130/B36316.1

Stephenson M.H. & McLean D. (2023). Lopingian (Late Permian) palynomorphs from the Cadeby Formation, Cadeby Quarry, Yorkshire, UK. Rivista Italiana di Paleontologia e Stratigrafia, 129(1), 25-47. https://doi.org/10.54103/2039-4942/17850

Sui Q., Sheng Z.H., Yang J.Y., Guo Y., McLoughlin S. & Feng Z. (2023). Two new isoetalean (Lycopsida) megaspore species representing the earliest occurrence of Henrisporites from upper Permian strata of Southwest China. Review of Palaeobotany and Palynology, 314, 104894. https://doi.org/10.1016/j.revpalbo.2023.104894

Zhou N., Li L., Wang Y., Lu N., Xu Y. & Wu X. (2023). Fertile organs and in situ spores of a marattialean fern (Asterotheca) from the Early Permian of northwestern China. Review of Palaeobotany and Palynology, 309, 104813. https://doi.org/10.1016/j.revpalbo.2022.104813

Zhou W., Pšenička J., Bek J., Libertín M., Wang S. & Wang J. (2023). A new species of Botryopteridium Doweld from the Early Permian Wuda Tuff Flora and its evolutionary significance. Review of Palaeobotany and Palynology, 311, 104849. https://doi.org/10.1016/j.revpalbo.2023.104849

Resources

Ding J., Sun J., Nie H., Yang X., Ye Y., Shi G., Wang R., Huang B., Sun X. & Li H. (2023). Organic geochemical characteristics and organic matter enrichment of the Upper Permian Longtan Formation black shale in Southern Anhui Province, South China. ACS Omega, 8(19), 16748-16761. https://doi.org/10.1021/acsomega.3c00273

Gao P., Xiao X., Meng G., Lash G.G., Li S. & Han Y. (2023). Quartz types and origins of the Upper Permian Dalong Formation shale of the Sichuan Basin: Implications for pore preservation in deep shale reservoirs. Marine and Petroleum Geology, 156, 106461. https://doi.org/10.1016/j.marpetgeo.2023.106461

Huang S., Jiang Q., Jiang H., Tang Q., Zeng F., Lu W., Hao C., Yuan M. & Wu Y. (2023). Genetic and source differences of gases in the Middle Permian Qixia and Maokou formations in the Sichuan Basin, SW China. Organic Geochemistry, 178, 104574. https://doi.org/10.1016/j.orggeochem.2023.104574

Karanam V. & Lu Z. (2023). Hydrocarbon production induced land deformation over Permian Basin; analysis using persistent scatterer interferometry and numerical modeling. International Journal of Applied Earth Observation and Geoinformation, 122, 103424. https://doi.org/10.1016/j.jag.2023.103424

Lei Z., Ling W., Wu H., Zhang Y. & Zhang Y. (2023). Geochemistry and Mineralization of the Permian Bauxites with Contrast Bedrocks in Northern Guizhou, South China. Journal of Earth Science, 34(2), 487-503. https://doi.org/10.1007/s12583-021-1484-1

Li X., Qiao W., Chen D., Wu P., Xie Y. & Chen X. (2023). Anomalous concentrations of rare earth elements in acid mine drainage and implications for rare earth resources from late Permian coal seams in northern Guizhou. Science of The Total Environment, 879, 163051. https://doi.org/10.1016/j.scitotenv.2023.163051

Lu Q., Qin S., Wang W., Wang Q. & Kang S. (2023). Geochemistry of Late Permian coals from the Yueliangtian coal deposit, Guizhou: Evidence of sediment source and evaluation on critical elements. Science of The Total Environment, 856, 159123. https://doi.org/10.1016/j.scitotenv.2022.159123

Nurbekova R., Smirnova N., Goncharev I., Sachsenhofer R.F., Hazlett R., Smirnov G., Yensepbayev T., Mametov S. & Fustic M. (2023). High-quality source rocks in an underexplored basin: The upper Carboniferous–Permian succession in the Zaysan Basin (Kazakhstan). International Journal of Coal Geology, 272, 104254. https://doi.org/10.1016/j.coal.2023.104254

Rocha H.V., Sant’Anna L.G., Rodrigues C.F., Mendes M., Pereira Z., Lopes G., Fernandes P., Pereira E., Tassinari C.C.G. & de Sousa M.J.L. (2023). The paleoenvironmental and thermal histories of the Permian Irati Formation shale in the Paraná Basin, Brazil: An integrated approach based on mineralogical and organic imprints. Marine and Petroleum Geology, 154, 106328. https://doi.org/10.1016/j.marpetgeo.2023.106328

Shang J., Feng M., Wang X., Zhang B., Xu L. & Liu X. (2023). Alteration effects of karstification and hydrothermalism on middle Permian Qixia formation at the Wulong section, South China. Scientific Reports, 13(1), 13128. https://doi.org/10.1038/s41598-023-40334-y

Shen M., Dai S., French D., Graham I.T., Spiro B.F., Wang N. & Tian X. (2023). Geochemical and mineralogical evidence for the formation of siderite in Late Permian coal-bearing strata from western Guizhou, SW China. Chemical Geology, 637, 121675. https://doi.org/10.1016/j.chemgeo.2023.121675

Varon D.J., Jacob D.J., Hmiel B., Gautam R., Lyon D.R., Omara M., Sulprizio M., Shen L., Pendergrass D., Nesser H., Qu Z., Barkley Z.R., Miles N.L., Richardson R.J., Davis K.J., Pandey S., Lu X., Lorente A., Borsdorff T., Maasakkers J.D. & Aben I. (2023). Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations. Atmospheric Chemistry and Physics, 23(13), 7503-7520. https://doi.org/10.5194/acp-23-7503-2023

Wang Z., Zhao W., Liang J., Lin J., Guo W., Liu S., Du M. & Zhao C. (2023). Mineralogical and geochemical compositions of the Early Permian coal in the Huixiang Mine, Dengfeng Coalfield, Henan, China: Occurrence modes and origins of NH4-illite. Ore Geology Reviews, 105677. https://doi.org/10.1016/j.oregeorev.2023.105677

Zhang J., Zuo Y., Yang M., Huang W., Xu L., Zheng Z. & Zeng J. (2023). Hydrocarbon Generation and Expulsion Histories of the Upper Permian Longtan Formation in the Eastern Sichuan Basin, Southwest China. ACS Omega, 8(22), 19329-19340. https://doi.org/10.1021/acsomega.3c00048

Zhi D., Xiang B., Zhou N., Li E., Zhang C., Wang Y. & Cao J. (2023). Contrasting shale oil accumulation in the upper and lower sweet spots of the lacustrine Permian Lucaogou Formation, Junggar Basin, China. Marine and Petroleum Geology, 150, 106178. https://doi.org/10.1016/j.marpetgeo.2023.106178