Cover Photo
View of Upper Carboniferous and Lower Permian strata surrounding Hare Fiord on northern Ellesmere Island, Canadian Arctic Archipelago. This issue of Permophiles includes two articles by Henderson and Mei on the subject of conodonts from Ellesmere Island. Photo by Claude Spinosa 1968.
Contents

Notes from the SPS Secretary ... 1
Claude Spinosa

Notes from the SPS Chair ... 1
Bruce R. Wardlaw

Emerging Consensus for the Guadalupian-Lopingian Boundary ... 3
Charles Henderson, Jin Yugan, and Bruce Wardlaw

In Memory of Vasily Ermolaevich Ruzhencev ... 4
By A.A. Shevyrev (Translated by V.I. Davydov)

The Bursum Formation Stratotype, Upper Carboniferous of New Mexico, and the Bursumian Stage 7
Spencer G. Lucas and Garner L. Wilde

Preliminary Placement of the International Lower Permian Working Standard to the Glass Mountains, Texas .. 11
Bruce R. Wardlaw and Vladimir I. Davydov

The Base of the Permian System in China Defined by Streptognathodus isolatus 14
Wang Cheng-yuan

Preliminary Cool Water Permian Conodont Zonation in North Pangea: a Review 16
Charles M. Henderson and Shilong Mei

Paleobotany of the Upper Carboniferous/Lower Permian of the southern Urals. Part 2. Roots and Woods ... 24
S.V. Naugolnykh

Designing A Computer-Based Information System for Quantitative Palaeobiogeography of Permian Brachiopods .. 28
Edward C. Zhang, G.R. Shi and Shuzhong Sheng and Wanlei Zhou

Geographical Cline in Permian Neogondolellids and Its Role in Taxonomy: A Brief Introduction 32
Charles M. Henderson and Shilong Mei

Conodont definition on the basal boundary of Lopingian stages: A report from the International Working Group on the Lopingian Series ... 37
Jin Yugan

Has your address changed since you last received Permophiles? ... 40

Correspondence ... 41

Announcements .. 43
EXECUTIVE NOTES

Notes from the SPS Secretary
Claude Spinosa

I want to thank all who contributed articles for inclusion in the 36th issue of Permophiles and those who assisted in its preparation. We are indebted to Bruce R. Wardlaw, Charles M. Henderson, Brian F. Glenister, and Vladimir Davydov for editorial contributions; Vladimir Davydov translated the biography of V.E. Ruzhencev by A.A. Shevyrev. We thank Donald W. Boyd, William F. Grauten, Hisayoshi Igo, Spencer G. Lucas, Thomas Martens, Norman D. Newell, Yusuhiro Ota, Ausonio Ronchi, Tetsuo Sugiyama, Paul Wignall, and Garner Wilde for financial contribution to the Permophiles publication fund in support of this issue. Publication of Permophiles needs additional contributions and readers are referred to the last page of this issue. I am especially thankful to Joan White who came out of retirement as Permophiles Technical Editor to conclude this issue.

SPS Officers

My term as Secretary of the SPS will end at the SPS meeting in conjunction with the 31st International Geologic Congress this August and I take this opportunity to thank those colleagues with whom I had the pleasure of working over the last four years.

At the International Congress on Carboniferous and Permian in Calgary, August 17-21, 1999, the subcommission met several times. At one of the meetings, on August 19, the SPS Chair, (Bruce R. Wardlaw), First Vice-Chair (Ernst Ya. Leven), and the Secretary (Claude Spinosa) met during an informal meeting to discuss SPS officers. All officers present wished to remain on the subcommission except Claude Spinosa who, having completed one four-year term, declined renomination. His replacement, Charles M. Henderson, was appointed. Ernst Ya. Leven wished to continue, as did Bruce R. Wardlaw and it was assumed that Clinton Foster also wished to continue. The chair asked the assembled corresponding and voting members whether they objected to the present SPS membership and hearing no objection, pronounced that the present Chair and the two Vice-chairs and Charles Henderson as a replacement for Claude Spinosa would be the new SPS officers.

Future Issues of Permophiles

Issue 37 will be finalized by January 10, 2001 and we request that all manuscripts be sent before December 15, 2000, but preferably much earlier. Please see the attached note from Charles Henderson regarding the preferred method of manuscript submission.

Special Permophiles Issue for 31st International Geological Congress

We intend to devote Issue 37, which follows the 31st International Geological Congress, exclusively to publishing extended abstracts of the papers presented at the SPS symposium “International Standard References for the Permian System: Cisuralian of Southern Ural Mountains, Guadalupian of Southwestern North America, Lopingian of South China”. Tamra A. Schiappa, Bruce R. Wardlaw, and Brian F. Glenister are the conveners. The symposium consists of an afternoon poster session followed by a morning oral session of invited keynote speakers. Please refer to the site: http://www.31igc.org for details. The next regularly scheduled SPS meeting will be in conjunction with the North American Paleontological Convention (NAPC) that will be held on 26 June 2001 at the University of California, Berkeley. Please visit the NAPC site: http://www.ucmp.berkeley.edu/napc/

Notes from the SPS Chair
Bruce R. Wardlaw

We are very pleased with the excellent response of the SPS in submitting abstracts for our sponsored session at the IGC “The International Standard References for the Permian System”. We plan to dedicate the next issue of Permophiles to the presentations by inviting everyone to submit extended abstracts for that issue. In Permophiles 35, I presented a working document on the Permian scale for discussion. To my amazement, I have received some comments and present the amended scale here. Once again, this scale is submitted as a working document for discussion and refinement rather than as “the” final statement. First, was the concern that the base of the Permian is too young. I am afraid that that conception is based on old ideas of where the Permian boundary was. The boundary is now officially set at Aïdaralash, by the First Appearance Datum of Streptognathodus isolatus. Reliable dates are being obtained from near the boundary and indicate 291-292 m.y. age range for the boundary. Second, was the concern about my placement of the Capitanian-Wuchiapingian boundary. As I stated, this is a working scale and I placed my “best” guesses at the potential identifiers for boundaries. As Wang pointed out at the last SPS meeting in Calgary, the evolution of Clarkina postbitteri in the proposed stratotype is questionable, but the evolution of C. postbitteri to C. dukouensis is not and it is only a matter of changing the boundary a metre or so. Again, I presented the scale to develop discussion. I had hoped to get more input on the reliable radiometric ages and get more with good ties to the conodont biostratigraphy. Finally, local zonations, which I view as subzones, were requested to be put into the scale so that a better appreciation of where they fit in to the scheme could be attained. I have begun this process. I hope to see many members this summer at the IGC and look forward to more discussion of the Permian scale.
<table>
<thead>
<tr>
<th>Time</th>
<th>Stage</th>
<th>Conodont Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>Changhsingian</td>
<td>changxingensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>subcarinata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wangi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>orientalis</td>
</tr>
<tr>
<td></td>
<td>Wuchiapingian</td>
<td>transcaucasica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>guangyuansensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tryoni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>asymmetrica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dukouensis</td>
</tr>
<tr>
<td>265</td>
<td>Capitanian</td>
<td>altudaensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>postserata</td>
</tr>
<tr>
<td></td>
<td>Wordian</td>
<td>aserrata</td>
</tr>
<tr>
<td></td>
<td>Roadian</td>
<td>rankingensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>newelli</td>
</tr>
<tr>
<td>270</td>
<td></td>
<td>sulcoplicatus</td>
</tr>
<tr>
<td></td>
<td>Kungurian</td>
<td>prayi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"exsulptus"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pnevi</td>
</tr>
<tr>
<td>280</td>
<td>Artinskian</td>
<td>pequopensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>postwhitei</td>
</tr>
<tr>
<td></td>
<td></td>
<td>florensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>whitei</td>
</tr>
<tr>
<td>283</td>
<td>Sakmarian</td>
<td>trimilus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>barskovi</td>
</tr>
<tr>
<td>290</td>
<td>Asselian</td>
<td>fusus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>postfusus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nevaensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>constrictus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>isolatus</td>
</tr>
</tbody>
</table>
Emerging Consensus for the Guadalupian-Lopingian Boundary

Charles Henderson, Jin Yugen, and Bruce Wardlaw

In a letter to this issue of Permophiles (see page 42), Dr. Brian Glenister issued a challenge to try and come to a solution for a Guadalupian-Lopingian boundary decision. It appeared that this boundary decision was hopelessly mired in controversy (see Jin Yugen’s report in this issue of Permophiles and papers by Wang, 2000 and Jin, 2000). Dr. Claude Spinosa, SPS Secretary, agreed to hold back production of this issue of Permophiles to see if consensus could emerge. Following examination and reconsideration of important collections by Henderson (see Jin Yugen’s report) and Wardlaw and following several e-mail discussions between the three of us, we report that a consensus is emerging regarding the boundary. This consensus can be summarized as follows: 1. that the boundary stratotype section should be located at Penglaitan in the Laibin area of Guangxi, South China, 2. that the boundary should be located within the lowstand deposits referred to as the Laibin Limestone, and 3. that the GSSP should be defined by either the first occurrence of Clarkina postbitteri (at the upper part of bed 115-6i) or at an arbitrary point within a gradational morphocline from C. postbitteri to undisputed C. dukouensis. Wardlaw indicates that this latter position could be defined at bed 114.6-6k where increasing numbers of adult specimens of Clarkina display a posteriormost denticle reduced in size, a gap between this denticle and cusp, a marked narrowing of the platform, and a higher blade. Henderson recognizes these specimens as Clarkina postbitteri and suggests that they could be referred to as a new subspecies of C. postbitteri, rather than to C. dukouensis.

We also agree that before a decision can be made, further investigation and documentation of the ancestry of Clarkina postbitteri and of the morphocline from C. postbitteri to C. dukouensis is necessary. The ancestry of C. postbitteri is disputed at present. Wardlaw believes that it is with Jinogondolella crofti whereas Henderson (see Jin Yugen’s report) believes that it is with J. granti. In addition, the FAD of C. postbitteri is controversial. Wang has previously reported this FAD as low as bed 116.4-4f, but Henderson (in Jin Yugen’s report) reports that none of the 400 specimens from a sample of 22.5 kg display characters even close to C. postbitteri. We regard this irreproducibility of this occurrence as clear evidence that the FAD of C. postbitteri is higher in the section. Further study is also needed regarding the correlation between two sections at Tieqiao and the Penglaitan section. Wardlaw reports both Jinogondolella granti and C. postbitteri in samples from beds C7 and C8 at Tieqiao whereas Henderson reports only C. postbitteri from bed C8 and that none of his samples from Penglaitan show overlap between these two taxa. The morphocline between C. postbitteri and C. dukouensis, although seemingly apparent, is not well documented and needs to be better defined. In addition, the characters used to recognize both of these species need to be better defined and used more consistently. Refined taxonomy of late Guadalupian Jinogondolella species will also help in the effort to correlate the type Guadalupian with the Guadalupian of S. China. All of these taxonomic issues, evolutionary relationships, and correlations need to be better resolved before a final consensus can be determined. However, the emerging consensus reported above means that this effort could be focussed on a relatively narrow interval with a clear goal in mind.
In Memory of Vasily Ermolaevich Ruzhencev
By A. A. Chevyrev
(Translated by V.I. Davydov)

On the 100th Anniversary of V.E. Ruzhencev’s birth

On the 4th of April 1999 V.E. Ruzhencev would have turned 100 years old. He was born in the Smolensk region and he lost his father early in life. After being admitted to the Smolensk secondary school he gave private lessons to augment the family income. After finishing school in 1918, he worked as a teacher for a short period of time and soon afterwards began working as a supervisor in the Smolensk school district.

In 1921 he was appointed to the Moscow Mining Academy, where he attended lectures by A. D. Arkhangelsky and N. S. Shatsky. From 1928 to 1934 he worked as a geologist in the Ministry of Railroads, in the Research Institute of Energy Fluids and in the Oil Exploration Institute. During this period of time he worked on problems of geology and oil and gas exploration in the Caucasus, Emba, and the Urals. He studied phosphorite deposits of west Kazakhstan and the Volga region and potassium salts of Middle Asia and other regions of the Soviet Union.

In 1934, subsequent to his involvement with oil projects in the region of the Volga Urals petroleum province (the Second Baku), V.E. Ruzhencev was appointed senior geologist in the “East-Oil” organization, and later worked as the head of field exploration teams. He particularly focused his attention on the stratigraphy of the upper Paleozoic of the south Urals. From 1933 to 1936 he published a series of papers on the Late Carboniferous—Early Permian ammonoids of the south Urals and started planning serious research of ammonoids.

A new path in the life of Vasily Ermolaevich developed in 1937 when he was accepted for work at the Paleontological Institute, where he soon became the head of the department of invertebrates. Two years later he became the head of the laboratory of Advanced Molliusks and from that moment on he began his fulfilling job of ammonoid studies that lasted 40 years.

After a suggestion from the director of the Paleontological Institute, A. A. Borisjak, Vasily Ermolaevich directed his research efforts towards ontogenetic change and phylogenetic relationships of late Paleozoic ammonoids. This approach to ammonoid research was initiated in the 1870’s by A.P. Karpinsky on Uralian prolecanitid organization, and later worked as the head of field exploration teams. He particularly focused his attention on the stratigraphy of the upper Paleozoic of the south Urals. From 1933 to 1936 he published a series of papers on the Late Carboniferous—Early Permian ammonoids of the south Urals and started planning serious research of ammonoids.

A new path in the life of Vasily Ermolaevich developed in 1937 when he was accepted for work at the Paleontological Institute, where he soon became the head of the department of invertebrates. Two years later he became the head of the laboratory of Advanced Molliusks and from that moment on he began his fulfilling job of ammonoid studies that lasted 40 years.

After a short break due to World War II, during which V. E. Ruzhencev was engaged in the search for subsurface oil-bearing structures in Bashkoria, he once again returned to late Paleozoic ammonoid research. For this purpose he organized several expeditions to the south Urals. In 1949 he published a significant monograph on the systematics and evolution of pronoritids and medlicottids, which represents a thorough ontogenetic and phylogenetic investigation of two late Paleozoic ammonoid families.

For this work Vasily Ermolaevich received the A. P. Karpinsky award.

In the 1950s V. E. Ruzhencev completed a long-term research project on late Paleozoic ammonoids with the publication of four major monographs, in which an enormous amount of data was described and evaluated on an ontogenetic and phylogenetic basis. Large collections of well preserved ammonoids were used for ontogenetic research and the construction of specific phylogenetic lineages, which provided scientists the basis for solving many difficult problems of phylogeny and systematics.

Vasily Ermolaevich also focused his intellect on problems of theoretical paleontology. He studied such problems as methods and principles of research, interrelation of individual and historical development, evolution and functional significance of septa in ammonoids, genetic terminology and types of evolutionary changes of suture line, analogy and homology of different septal elements, and so on. In his works Vasily Ermolaevich gives perfectly distinct and persuasive examples of recapitulation in ammonoid evolution. Ruzhencev’s view of general regulations of the evolutionary process are most fully expressed in his important manuscript “Principles of Systematics, System, and Phylogeny of Paleozoic Ammonoids” (1960). The first part of this book thoroughly explains the theory of phylogenetic systematics. It describes types of systems, problem of interrelations of ontogeny and phylogeny (ontogenetic recapitulation, ontogenetic and phylogenetic alterations, and ontogenetic acceleration), problems of phylogenetic systematics (interrelationships of systematics and phylogeny, reality and features of taxonomic categories, the problem of transition in systematics), principles of phylogeny and systematics (chronology, principle of homologies, ontogenetic, principle of the main link and chronological principles). The second part presents a thorough description of the system and phylogeny of Paleozoic ammonoids. The first section of this book was translated into several foreign languages and aroused great interest among paleontologists and biologists around the world. The system of ammonoids worked out by Vasily Ermolaevich was accepted in a volume of “Principles of Paleontology” (1962).

On the initiative and under the leadership of Ruzhencev, the Paleontological Institute undertook large-scale projects and thematic research. A major monograph “Development and Change of Marine Organisms at the Boundary of Paleozoic and Mesozoic” that was published in 1965 deserves special attention. It aroused much interest from both Russian and foreign paleontologists.

Ruzhencev was the initiator in providing global summaries on large groups of fossils and characterizing the steps of the evolution of the Earth. For example, a fundamental work by Vasily Ermolaevich (together with M.F. Bogoslovskaya) “Namurian Stage in Ammonoid Evolution” was published in two volumes (1971, 1978).

While studying ammonoids Vasily Ermolaevich was always concerned with their stratigraphic application. He was skeptical regarding the popular idea of global stratotypes, which he considered to have only regional application. However, he believed that all strata of a general stratigraphic scheme were controlled by the corresponding biochronotype, i.e. by a definite standard complex of ammonoids. Based mainly on Uralian sections and also on sections of some other regions, Ruzhencev divided the Carboniferous System into 17 ammonoid generic zones and grouped them into 10 stages. Ruzhencev was the first to describe ammonoids of...
the Late Carboniferous of the Soviet Union. Based on ammonoid studies he subdivided Upper Carboniferous into two stages: the Zigulevian and the Orenburgian.

Vasily Ermolaevich showed that Early Permian ammonoids, considered by Karpinsky to belong only to the Artinskian, consisted of three complexes - Asselian, Sakmarian and Artinskian, thus two more stages, the Asselian and the Sakmarian were recognized.

Ruzhencev is the author of 130 scientific works, among them 17 monographs, most of which have become reference books for paleontologists throughout the world and are highly praised by specialists.

Vasily Ermolaevich directed the laboratory of Advanced Mollusks in the Paleontological Institute which he himself organized and was active in a science council on the problem “Ways and regulations of evolution of fauna and flora”, in Carboniferous and Permian committees, on the Interdepartmental Stratigraphic Committee of Soviet Union, as a member of a committee on Severtsev’s award, and for several years as a titular member in committee acceptance. He was the initiator and organizer of several All-Union Paleontological meetings and conferences where he gave important speeches. Ruzhencev’s organizational talent revealed itself most fully in the process of compiling and publishing a fifteen volume treatise “Principles of Paleontology.” As an editor, he and with U.A. Orlov, organized and selected a group consisting of two hundred and fifty authors, and developed a basic plan for the “Principles of Paleontology” and the uniformity of description of all taxa. Together with the publishing house of the Academy of Sciences he produced a plan for organizing and publishing all the volumes. The successful publication of “Principles of Paleontology” was executed by precise planning, uniformity of description, and a regular inspection. In 1967 Ruzhencev, along with the chief editor of “Principles of Paleontology”, Orlov, and two other editors Sokolov and Markovskiy, were awarded the Lenin Award.

From inception of the founding of the “Paleontological Journal” in 1959, Ruzhencev was its editor and after Orlov’s death in 1966, he became chief editor. He wrote several programming and methodical articles for the Journal. The scientific style and the mood of this journal were defined by Vasily Ermolaevich. One of Ruzhencev’s achievements was the founding of a school of thought of cephalopod specialists. He showed great care in educating a new generation of paleontologists, paid attention to and helped many young specialists. He was not afraid to reveal serious problems to young researchers, entrusted them with important paleontological themes, and was attentive in supervising and directing their research.

The theoretical basics of systematics and methods of ontogenetic research created by V.E. Ruzhencev are widely used by Russian paleontologists and by many foreign specialists. Many ammonoid workers, not only beginners but also those of renown, came to seek his advice. The great contribution made by V.E. Ruzhencev to the study of the stratigraphy of upper Paleozoic, was the establishment of stage and zonal subdivision of the Carboniferous and Permian and also the solution of complex stratigraphic problems, which brought him to a position of great respect among geologists.

Ruzhencev’s great scientific and organizational achievements resulted mostly from his personal qualities - wide range of interests, adherence to principles, industriousness, ability to work, exceptional self-discipline, exactness to oneself and others. His papers are characterized by clarity of thought, taking into account all facts and logical conclusions. Vasily Ermolaevich was a man of principle. He courageously stood up for his scientific beliefs even if they went against accepted concepts. He was never enamoured of popular theories or influenced by scientific authorities. He took into account only facts.

All people who worked with V.E. Ruzhencev enjoyed dealing with him. Students and laboratory staff experienced his constant help and support. For them he was a strict and demanding supervisor, but also a kind, responsive person, an understanding senior friend, always ready to share his life and scientific experience.

I met Vasily Ermolaevich in late summer 1954 when I was accepted as junior scientist at Paleontological Institute, Laboratory of Advanced Mollusks, after graduating from Moscow University. I was to investigate Triassic ceratites and to use ontogenetic and phylogenetic methods, the advantages of which were demonstrated by Ruzencev’s study of Paleozoic ammonoids. I did not have any material then and started by studying the literature. I soon learned that ontogenetic recapitulation, which served as a basis for Vasily Ermolaevich’s studies, had been rejected by some quite famous paleontologists and biologists. Some of them fully rejected Muller-Heckel Law ironically saying that this law makes every species climb its own phylogenetic tree. Opponents of the ontogenetic method, for instance, the famous English paleontologists L. Spat and U. Arkell, considered the study of ontogeny to be useless, and they thought that the need for breakaking back the shells would ruin paleontological collections.

As I had no experience of my own, I felt at a loss. For me, arguments of both supporters and opponents of the ontogenetic method were equally persuasive. Vasily Ermolaevich observed my doubts, but was not trying to influence me; he was patiently waiting for my decision. At first he was controlling my work, checking the precision of my measurements of shells, the correctness of sketching lobe lines and of my descriptions, but after I defended my Ph.D. thesis, he allowed me to work independently.

Vasily Ermolaevich had a bad temper. Negligence or poor quality of work drove him out of his wits. Once during a field trip Vasily Ermolaevich was working hard to break a paleontological sample out of rock. After putting it very carefully on a boulder, he went to look for another sample. Meanwhile, a student from Moscow Mining Institute came up to the boulder, saw the sample, and struck it with a hammer. The sample was smashed to pieces. When Vasily Ermolaevich saw what happened to the results of his hard efforts, he exploded. All of us quickly retreated leaving our miserable friend to the mercy of fate. Soon the “storm” was over. When we looked out of our shelter we found Vasily Ermolaevich searching for a new sample, as if nothing had happened. The incident was forgotten. Vasily Ermolaevich never referred to it again. He did not keep bad memories.

Vasily Ermolaevich was a great optimist. He believed in a bright future for our science. It is not the best time for paleontology now, but let us take example from Vasily Ermolaevich and never lose hope.

[Editors note: The previous note is a translation of a tribute made to V.E. Ruzhencev that appears in a volume dedicated to him on the occasion of his 100th birthday. The volume, entitled "Fossil Cephalopods: Recent Advances in their Study", edited by A. Yu. Rozanov and A.A. Shevyrev, (ISBN 5-201-15403-4) contains sixteen original articles regarding cephalopods. The volume is avail-
SUBMISSION GUIDELINES
FOR ISSUE 37

It is best to submit manuscripts as attachments to E-mail messages. Please send messages and manuscripts to my E-mail address followed by hard copies by regular mail. Please only send a single version by E-mail and in the mail; if you discover corrections before the deadline, then you may resubmit, but indicate the file name of the previous version that should be deleted. Manuscripts may also be sent to the address below on diskettes (3.5” or zip disks) prepared with a recent version of WordPerfect or Microsoft Word; printed hard copies should accompany the diskettes. Word processing files should have no personalized fonts or other code and should be prepared in single column format. Specific and generic names should be italicized. Please refer to recent issues of Permophiles (Glenister et al., Permophiles #34, p. 3) for reference style, format, etc. Maps and other illustrations are acceptable in tif, jpeg, eps, bitmap format or as CorelDraw files. The preferred formats for Adobe Pagemaker are Microsoft Word documents and tif files for images. We use Times Roman 12 pt. bold for title and author and 10 pt. for text. Indents for paragraphs are .2”. Word processing documents may include figures embedded at the end of the text, but these figures should also be attached as separate attachments in tif format. Do not include figure captions as part of the image; include the captions as a separate section within the text portion of the document. If only hard copies are sent, these must be camera-ready, i.e., clean copies, ready for publication. Typewritten contributions may be submitted by mail as clean paper copies; these must arrive well ahead of the deadline, as they require greater processing time. Any versions that require translation must also be submitted well ahead of the deadline. All paper versions of articles for Permophiles will be destroyed after the deadline of the subsequent issue, unless a request is made for return.

Please note that articles with names of new taxa will not be published in Permophiles. Readers are asked to refer to the rules of the ICZN. All manuscripts will be edited for consistent use of English only.

I currently use a Windows 98 PC with Corel Word Perfect 8, Corel Draw 8, Adobe Page Maker 6.5, and Microsoft Office 97 programs; documents compatible with these specifications will be easiest to work with.

E-Mail:

henderson@geo.ucalgary.ca

Mailing Address:

Dr. Charles M. Henderson
Department of Geology and Geophysics
University of Calgary, Calgary, Alberta

CANADA T2N 1N4

The Bursum Formation Stratotype, Upper Carboniferous of New Mexico, and the Bursumian Stage

Spencer G. Lucas
New Mexico Museum of Natural History
1801 Mountain Road N.W.
Albuquerque, New Mexico 87104, USA

Garner L. Wilde
GLW International
5 Auburn Court
Midland, Texas 79705, USA

Introduction

The term Bursum has been used to refer to a lithostratigraphic unit, a biostratigraphic zone or to a stage (Bursumian) of the earliest Permian or latest Carboniferous in North America. The type section of the lithostratigraphic unit Bursum Formation has never been described in detail, so the exact lithostratigraphic boundaries of the Bursum Formation have not been certain. Furthermore, the Bursum lithostratigraphic unit and the Bursum biostratigraphic unit do not necessarily coincide.

Lucas et al. (2000) describe in detail the type section of the Bursum Formation in order to define it more precisely as a lithostratigraphic unit, and we present a brief summary here. Results of our preliminary study of fusulinids from the Bursum type section establish the biostratigraphic position of the Bursum Formation stratotype. This biostratigraphy suggests that the base of the Bursum Formation (lithostratigraphic unit) does not correspond to the base of the Bursumian Stage (chronostratigraphic unit) as used by some workers.

Previous studies

Different concepts of the Bursum Formation (Fig. 1) reflect the lack of a detailed description of the type section and different concepts (lithostratigraphic vs. biostratigraphic) applied to the term Bursum. Wilpolt et al. (1946) named the Bursum Formation, but the type section is outside of the area they mapped, so they provided no detailed description. However, they did map the Bursum Formation throughout a large area and presented several measured sections in columnar form, and this provided a basis for recognition and correlation of the formation in central New Mexico.

Wilpolt and Wanek (1951) mapped an area that included the type section of the Bursum Formation. Here, they mapped the Bursum overlying a tongue of the Abo Formation, which overlies the upper arkosic member of the Madera Formation. They noted that

...a thick, white-weathering limestone, occurring at the top of the formation in the Oscura Mountains, has been considered by Thompson (1942, pl. 2, opposite p. 20) to be of Wolfcamp age. Thompson assigned the strata below this massive bed and above the massive limestone of the arkosic limestone member of the Madera limestone to his Bruton formation. Thompson’s Bruton formation is equivalent to all of the Bursum formation except the uppermost massive ledge and the thin beds of limestone

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abo Formation</td>
<td>Abo Formation</td>
<td>Abo Formation</td>
<td>Bursum Formation</td>
<td>Abo Formation</td>
<td>Abo Formation</td>
</tr>
<tr>
<td>Schwagerina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichites cretaceus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red beds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolfcamp limestone member of Madera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madera Formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arkosic limestone member of Madera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virgilian (Fresnal Group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madera Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Changing concepts of the Bursum Formation stratotype.
interbedded with red and green shale that lie just above the top of the arkosic limestone member of the Maderia in the Oscura Mountains and Hansonburg Hills.

Thompson (1954, p. 18) made it clear that his concept of the Bursum was biostratigraphic/chronostratigraphic when he stated that “the term Bursum should be redefined so as to apply only to pre-Abo Wolfcampian rocks of New Mexico.” Thompson therefore reassigned the Wolfcampian part (upper 40 ft) of his Bruton Formation to the Bursum Formation, but he also stated that “a lower part of the Bursum as defined by Wilpolt et al. here is retained in the Bruton formation.” Thompson (1954) did not provide a description of the Bursum Formation type section, and his cross-section (Thompson, 1954, fig. 5) is so generalized that it is unclear exactly how he might have interpreted that section. However, he evidently modified his concepts of Bruton and Bursum, probably in part as a result of the work of Wilpolt and Wanek (1951).

Figure 2. Map of New Mexico showing location of type section of Bursum Formation, geologic map of the area around the type section of the Bursum Formation and measured section of the type section of the Bursum Formation showing fusulinacean distribution.
Stratotype

The type section of the Bursum Formation designated by Wilpolt et al. (1946) is in the Hansenburg Hills of Socorro County, New Mexico, in the NE ¼ SE ¼ sec. 1, T6S, R4E, between Cornet Tank and the Bursum Triangulation Point (Fig. 2). Here, the Bursum Formation crops out as a NW-SE-striking belt of strata that dip about 25° to the NE. Cornet Tank is built in valley floor alluvium, and outcrops immediately east of the tank are strata of the Permian (Leonardian) Yeso Formation that dip about 60° to the NNW. This is because a high angle normal fault has downdropped Yeso strata west of limestones and drab calcareous shales of the upper Madera Group (Bruton Formation of Thompson, 1942; arkosic limestone member of Madera Formation of Wilpolt and Wanek, 1951) that dip eastward on the east side of the fault. Indeed, east of the fault, a single, eastward-dipping section of Madera, Bursum and Abo formations is present (Fig. 2).

At the type section (Figs. 2), we place the Bursum-Madera contact at a point of maximum lithologic contrast that facilitates mappability of the base of the Bursum Formation. Thus, the basal bed of the Bursum Formation is “red” (pale brown) mudstone with numerous limestone (calcrite) nodules (Fig. 2, bed 6), which overlies gray limestones and brownish gray shale of the upper part of the Madera Group (Fig. 2, beds 1-5). Probably, Wilpolt and Wanek (1951) mapped the lower red beds we assign to the Bursum Formation (Fig. 2, units 6-12) as a tongue of the Abo Formation. However, these beds do not merge laterally with the Abo and are thus assigned by us to the Bursum (for similar assignment, see Bachman, 1968).

The Bursum-Abo contact is also a readily mappable boundary characterized by distinctive lithologic contrast. Thus, the basal Abo is reddish brown and grayish red sandstone (Fig. 2, unit 45) at the base of a nearly monochromatic succession of red beds of mudstone and fluvially-deposited sandstone and conglomerate. Underlying Bursum strata are grayish limestones and pale red and yellow shales (Fig. 2, units 38-44).

At the type section, the Bursum Formation is 85 m thick. It is mostly shale (55% of the measured section) and lesser amounts of mudstone (23%) and limestone (19%). Minor rock types are conglomerate (2%), sandstone (< 1%) and calcareous (< 1%). Bursum shales are dominantly “red” (pale reddish brown) and calcareous. Some shale intervals have abundant nodules of limestone. Bursum limestone beds are medium gray or dark gray and are either unfossiliferous micrites or fusulinid-brachiopod-bryozone packstones. The limestone beds form ledges or cuestas between shale slopes. Some shale beds, and the mudstone beds, particularly in the lower half of the type section (Fig. 2, units 6-16), are “red” (pale brown or grayish red). Conglomerate beds are clast supported and composed of limestone pebbles.

Thus, at its type section the Bursum Formation is a lithologically distinctive, readily mappable lithostratigraphic unit between Madera and Abo strata. Unlike underlying Madera strata, the Bursum contains substantial intervals of red-bed shale and mudstone, and some beds of limestone-peekle conglomerate and trough-crossbedded sandstone. Unlike the overlying Abo Formation, the Bursum contains beds of marine limestone and calcareous shale. The unit is thus transitional between wholly marine (upper Madera) and wholly nonmarine (Abo) units, but retains an unique lithologic character.

Biostratigraphy of the stratotype

Macroinvertebrate fossils are common in only a few limestone beds of the Bursum Formation at its type section. Collections we made come primarily from beds 21 and 29 (Fig. 2) and are dominated by brachiopods of Virgilian affinities (Barry S. Kues, written commun., 1999).

Our study of stratotypical Bursum fusulinaceans (Lucas et al., 2000) should be considered preliminary because the material at our disposal is not sufficiently representative to be definitive, inasmuch as most of the species are identified from too few specimens. For example, from five stratigraphic levels (Fig. 2), a total of 31 thin sections were available, for an average of little more than six sections per collection. Nevertheless, two zones appear to be represented in the type Bursum, although their usefulness regionally might be called into question. Zone A extends from well below the base of the Bursum to the top of bed 15 (Fig. 2), or about 62 m, and includes Triticites sp, C. T. creekensis, and Leptotriticites fivenisis. Zone B extends ostensibly to the top of the Bursum, or about 50 m, although our material occurs within an interval of only about 10 m in the middle of the formation and includes Triticites creekensis, Leptotriticites glenensis, Schwagerina grandensis, and S. camensis.

Inasmuch as T. creekensis is in the lowest and highest collection, the entire section could be referred to that zone. Also, Leptotriticites occurs in beds 15 and 18 only, which could be representative of a thin zone of that genus. Schwagerina does not occur in Zone A. We know from other areas of Kansas, Texas, and New Mexico, that this zonation must be a local one, and thus not useful regionally. We can say, however, that the entire fauna is rather typical of the early Wolfcampian (Wilde, 1990, zone PW-1), which is recognizable throughout North America.

The Bursumian Stage

In North America, the Carboniferous (Pennsylvanian)-Permian boundary has long corresponded to the base of the Wolfcampian Stage (Virgilian-Wolfcampian boundary), which traditionally corresponded to the first appearance datum (FAD) of the fusulinid Schwagerina (e.g., Baars et al., 1992). The recent establishment in western Kazakhstan of the GSSP for the Carboniferous-Permian boundary (Davydov et al., 1995) forces the position to change in the North American regional scale. Thus, the GSSP in Kazakhstan corresponds to a so-called “conodont boundary,” which is at the FAD of the conodont Streptognathodus isolatus, which is very close to the base of the Sphaeroschwagerina vulgaris (S. aktubensis) fusulinid zone. Correlation of this boundary to the North American fusulinid zonation indicates that the base of the Permian is now close to the FAD of Pseudoschwagerina, which is within the Wolfcampian Stage (Fig. 3).

In the standard global chronostratigraphic scale, each System base corresponds to the base of a Stage (e.g., Aubry et al., 1999). The secondary standard provided by the North American provincial stages should also have the Carboniferous-Permian System boundary correspond to the base of a stage, but this requires some modification and/or redefinition of the regional stages (Fig. 3). Baars et al. (1992, 1994a, b) have “solved” this problem by redefining the Virgilian Stage to encompass strata previously included in the lower Wolfcampian (Fig. 3). A second solution, advocated by Ross and Ross (1987, 1994), is to recognize a Bursumian...
Stage equivalent to the lower Wolfcampian of earlier usage (Fig. 3).

Our study of the type section of the Bursum Formation has some bearing on recognition of a Bursumian Stage. Fusulinid distribution at the type section indicates that the base of the Bursum Formation (lithostratigraphic unit) does not correspond to the base of a fusulinid zone. This means that the base of a Bursumian Stage, if it corresponds to the base of a fusulinid zone, is stratigraphically lower, at an unidentified stratigraphic level in the Madera Group.

The type section of the Bursum Formation is not a suitable stratotype for a Bursumian Stage. No easily defined biostratigraphic base to a Bursumian Stage can be identified at this section. Furthermore, the section is located on the White Sands Missile Range, managed by the U.S. Army, and thus virtually inaccessible to non-U.S. citizens. The search for a Bursumian stratotype will thus have to focus elsewhere.

Acknowledgments

The U. S. Army, through Bob Myers, made it possible to conduct fieldwork on the White Sands Missile Range. Peter Reser assisted in the field. Barry Kues provided identifications of macroinvertebrate fossils. John Estep and Sara Robbins collaborated in the analysis of rock samples and fusulinaceans.

References

Preliminary Placement of the International Lower Permian Working Standard to the Glass Mountains, Texas

Bruce R. Wardlaw
U.S. Geological Survey
Reston, VA

Vladimir I. Davydov
Permian Research Institute
Boise State University
Boise, ID

Conodonts

The International Lower Permian Working Standard is based on conodont distributions in the southern Uralss, Kansas, and West Texas. Asselian is defined on the first appearance of Streptognathodus isolatus. This occurs at the base of the Bennett Shale of the Red Eagle Limestone in Kansas. The current working definition for the base of the Sakmarian is the FAD of Streptognathodus barskovi (sensu strictu). This occurs in the Eiss Limestone of the Bader Limestone in Kansas and is very close to the FAD of Sweeognathus merrilli which is in the upper part of the Eiss. The working definition of the base of the Artinskian is the FAD of Streptognathodus florensis or Sweeognathus whitei which both first appear in the base of the Florence Limestone of the Barnston Formation in Kansas. After Barnston deposition the Kansas section remains very shallow during marine incursions and only sparse to common Sweeognathus or Rabeignathus faunas are recovered. The working standard for the Kungurian conodont zonation is based on the distribution of conodonts from the Glass Mountains, Texas. The working definition of the base of the Kungurian is the FAD of Neostreptognathodus “exsculptus”. The Grey Limestone Member of the Gaptank Formation is a shallow-water carbonate that forms the top of the formation. Conodont faunas are sparse, but the base of the Grey Limestone Member contains a conodont fauna that correlates to the Foraker Limestone with the overlap of the ending range of Streptognathodus brownvillensis and the FAD of S. elongatus. The top of the Grey Limestone contains a conodont fauna that correlates to the Grenola Limestone with Streptognathodus nevaensis and S. elongatus. Therefore, the Carboniferous-Permian boundary is located within the Grey Limestone.

The Neal Ranch Formation is dominated by prodelta siltsstones with common plant debris and limestone and limestone conglomerate interbeds. The limestones yield a fair conodont fauna. At 52 m above the base Streptognathodus barskovi, S. isolatus and Sweeognathus merrilli occur (equivalent to bed 9 of Ross, 1963). The overlap of barskovi and isolatus indicates the base of the S. barskovi Zone. Streptognathodus barskovi occurs higher at 71 m where it occurs with S. postconstrictus which indicates the upper part of its zone.

The Lenox Hills Formation is largely delta conglomerates and does not yield many conodonts. However, in the Dogut Mountain area, it contains common limestone which yields a sparse fauna of Sweeognathus whitei and Neostreptognathodus transitus. This fauna indicates the upper Artinskian. Conodonts do not constrain well the Sakmarian-Artinskian boundary in the Glass Mountains area.

The Skinner Ranch Formation is largely limestone and limestone conglomerate with abundant conodont faunas. It its type section it contains Neostreptognathodus pequoensis at its base. At 17 m, a plethora of species of Mesogondolella and Neostreptognathodus occur, including Neostreptognathodus “exsculptus” which marks the base of the Kungurian.

<table>
<thead>
<tr>
<th>First Appearance</th>
<th>Stratigraphic Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. “exsculptus”</td>
<td>17 m above base, Skinner Ranch Fm.</td>
</tr>
<tr>
<td>S. barskovi</td>
<td>52 m above base, Neal Ranch Fm.</td>
</tr>
<tr>
<td>S. nevaensis</td>
<td>Top of Grey Limestone Member</td>
</tr>
<tr>
<td>S. elongatus</td>
<td>Base of Grey Limestone Member</td>
</tr>
</tbody>
</table>

Fusulinids

Basically, the fusulinid distribution in the Midcontinent and the Southwest support the conodont distribution. However, its interpretation is much more complex. The Late Pennsylvanian fusulinid biostratigraphy of Kansas and New Mexico was studied by Thompson almost 50 years ago and never has been revised. The Cisuralian fusulinid biostratigraphy in the classic region of West Texas was studied by Ross (1959, 1962, 1963, 1965). Recently, the Bursumian stage was suggested, “to fill a gap between top of Virgilian and base of the Nealian” (Ross and Ross, 1994). Several subdivisions were suggested for the Wolfcampian: Nealian and Lenoxian as equivalents of Asselian and Sakmarian, and for the Leonardian: Hessian and Cathedralian as equivalents for Artinskian and Kungurian (Ross and Ross, 1987, 1994). Predominantly generalized data of fusulinid assemblages for those stages with no species distribution in the sections were available for our analyses. Recent study of Bursumian in its stratotype provides new detailed information (Lucas et al., 2000, Lucas and Wilde, this issue).

The Grey Limestone of Gaptank Formation in Glass Mountains contains fusulinids which were described as Triticites comptus (Ross, 1963). However, major morphological features, such as three-layered wall with outer tectorium, character of septal fluting and presence of axial fillings suggest that this fauna belongs to the eastern hemisphere form, Schellwienia (Staff and Wedekind, 1910; Davydov, 1986, 1988; Rauser-Chernousova et al., 1996). Schellwienia in the Urals and Central Asia appears in early Orenburgian, is still abundant in lower Asselian and is rare in middle Asselian. Schellwienia comptus from the Grey Limestone are advance representatives of the genus and therefore may characterize either latest Orenburgian or earliest Asselian. The population of Schellwienia comptus figured by Ross (1963) looks heterogeneous because some specimens from lower Gaptank Fm. look more primitive (Ross, 1963, pl. 4, figs. 13, 17) and the rest of population including the holotype from Grey Limestone look more advanced (Ross, 1963, pl. 4, figs. 14, 18). Additional investigation of this species is necessary.

In the type section of Bursumian, the lower half of the section is characterized by Triticites creekensis which ranges all the way through the formation. However, Triticites creekensis from the lower Bursumian looks slightly more primitive than those from the upper Bursumian and; therefore, this species most probably represents a morpholine of subspheric Triticites, which can be divided into several independent species (one author is known to split species).
There are no *Leptotricites* in the lower Bursorian portion of the section and what was identified as “*Leptotricites fivensis*” probably is a microsphaeric specimen of *Triticites* (Lucas et al., figs. 74-7.5). The upper half of the section is characterized by true *Leptotricites glenensis* (Thompson) originally described from Glenrock Limestone, which based on conodonts belongs to the uppermost Gzhelian, immediately below the Asselian (Boardman et al., 1998). The other fusulinids recovered in the upper Bursorian were identified as “*Schwagerina grandensis*” which Thompson (1954) described from the overlying Hueco Limestone in Robledo Mountains.

To summarize all the above, we can suggest that the C/P boundary should be placed within the Bursorian, probably somewhere between beds 15 and 18 (Lucas et al., 2000). The limestone package of beds 15-22 in the Bursorian stratotype likely represents transgressive and highstand system tracts which corresponds well with the sedimentary cycle recognized in C/P transition in Southern Urals (Snyder et al., 1996, Davydov et al., 1997), Carnic Alps (Krainer & Davydov, 1998) and Arctic (Davydov et al., 1999).

Pseudoschwagerina does not characterize the base of the Permian in North America. In Nevada and the Glass Mountains, typical *Pseudoschwagerina* occurs predominantly in the Artinskian (Davydov, 1996, Davydov et al., 1997b). The most primitive and probably earliest representative of the genus (*Pseudoschwagerina rhodesi*) described by Thompson from the Hueco Formation in Rhodes Canyon, New Mexico (Thompson, 1954) occurs well above the Bursorian Formation. The other fusulinid species that co-occurs with *Pseudoschwagerina rhodesi* is *Schwagerina anderssoni* Thompson, very similar to *Schwagerina exuberata* (Shamov), a characteristic upper Asselian species in the Urals. In the Urals, Russian Platform, Norwegian and Russian Arctic and Central Asia there is a significant time interval between the FAD of *Sphaeroschwagerina* and the FAD of *Pseudoschwagerina*, which we estimated as 1.0-1.2 Ma. Therefore, the statement that the FAD of *Pseudoschwagerina* in North America is close to the base of the Permian (Ross and Ross, 1994; Lucas et al., 2000) is not supported by the fusulinid data.

Ross suggested that the Nealian (stratotype - section 22 of Wolf Camp Hills in the Glass Mountains, Ross, 1963) is characterized by *Paraschwagerina, Pseudoschwagerina uddeni, Stewartina texana, Eoparafusulina allisonensis* and “*Schwagerina* compacta,” and correlates with the Asselian of the Urals. The analysis of Ross’ data from the type section of Nealian allows us to recognize two different fusulinid assemblages. The first one encompasses beds 1–6 in the type section 22 and is represented mostly by the low diversity Triticites species (*T. pinguis, T. ventricosus, T. subventricosus*). This fauna is characteristic for the Midcontinent-Andean province and cannot be compared directly with Uralian fusulinids. However, one species, *T. pinguis*, is similar to the *Triticites ortashensis*, a very characteristic species of the uppermost Gzhelian in the Southern Urals (Davydov, 1986).

The next assemblage comprises the majority of the Nealian fusulinid fauna and occurs in beds 7-28 of section 22 of Wolf Camp Hill in Glass Mountains: *Leptotricites koschmansi, Pseudoschwagerina uddeni, Stewartina texana, Paraschwagerina kansanensis, P. gigantea, Schwagerina pugunculus, Schwagerina sp. A. “S.” compacta, “S.” sp. C.*

Leptotricites and *Stewartina* are provincial taxa and cannot be used for correlation with the Urals. *Pseudoschwagerina uddeni* and *P. beedei* in the Urals first occur in the middle Asselian, but range into the upper Asselian. In Central Asia, Tethyan province, these species range through the middle-upper Asselian, and into the Sakmarian (Leven, Scherbovich, 1980; Leven et al., 1992; Kahler, 1989; Ozawa and Kobayashi, 1990; Zhou et al., 1987; Chang, 1963). The Nealian *Paraschwagerina gigantea* is an advanced form most similar to *Paraschwagerina mira* from upper Tastubian, Sakmarian of the southern Urals (Rauser-Chernousova & Scherbovich, 1949). Recently, *Paraschwagerina ex gr. gigantea* (White) and *Paraschwagerina kansanensis* (Beede et Kniker) were identified from the Tastubian of the central Urals (Echaksov, 1993).

The *Schwagerina sp. A* (Ross, 1963, pl. 22, figs. 2-4,6) is similar to *Schwagerina moelleri* (Schellwien), the index species of lower Tastubian (Lower Sakmarian) of the Urals. Currently, the base of the Sakmarian in Kondurovsky section, the type section of the Sakmarian in Southern Urals, is suggested to be placed within bed 9, 75 m below its original position (Wardlaw et al., 1999). Several significant steps in fusulinid evolution were recognized within the *Schwagerina moelleri* group (Davydov et al., 1999). *Schwagerina sp. A* from the Nealian stratotype is most similar to the most advanced representative of *Schwagerina moelleri* group in the Urals, characteristic for upper Tastubian.

“*Schwagerina?*” sp. C (Ross, 1963, pl. 13, figs. 11,12) in modern nomenclature should be named *Eoparafusulina* and can be compared with the primitive *Eoparafusulina (E. perplexa, E. tersus*) group from the Tastubian of the Arctic Russia (Northern Timan, Kolguev Island) and Spitsbergen (Grozdilova and Lebedeva, 1961; Nilsson and Davydov, 1997; Davydov, 1997). Also *Eoparafusulina allisonensis* was described by Ross (1967) from the upper portion of the Neal Ranch Formation in the Wolfcamp Hills (Ross, 1967). This is perhaps a junior synonym of the *Eoparafusulina paralinearis* (Thorsteinsson), which is known from the Tastubian of Spitsbergen and Canadian Arctic (Nilsson and Davydov, 1997; Harker and Thorsteinsson, 1960) and occurs in upper Tastubian in Barents Sea.

“*Schwagerina* compacta” is quite similar with *Zigarella callosa*, which in the Urals occurs in the upper Tastubian and Sterlitamakian (Rauser-Chernousova, 1965).

The upper Nealian in its stratotype should be correlated with the upper Tastubian (Lower Sakmarian) in the Urals. It is important to emphasize that the well developed fauna from the upper Nealian appears abruptly in the rock record; most of these important taxa have no ancestral elements in underlying strata. The lower portion of the Neal Ranch Formation is perhaps equivalent to the uppermost Gzhelian and lowermost Asselian. Furthermore it can be suggested that there is a time gap within the Neal Ranch Formation (somewhere between beds 5-7 or 9 in stratotype). However, because the fusulinid fauna in the lower portion of the Neal Ranch Formation is very poorly studied, it remains enigmatic.

The fusulinid succession of the Lenoxian in its type section 8 of Lenox Hill in Glass Mountains, by Ross (1963) can be divided into two assemblages. The first one appears in beds 1-10 in the type-section. Some species range from Nealian into the overlying Lenoxian. The most characteristic species for this assemblage are: *Schwagerina tersa, Schwagerina cribrosepta, Schwagerina extumida, S. bellula, and Pseudofusulina lineonada*. The fusulinids from this assemblage are different from those of Tastubian and Sterlitamakian of the Urals, but can be compared with Tethyan fusulinids. *Schwagerina cribroseptata* is similar to
Schwagerina sairykensis (Leven), and Pseudofusulina lineonada is similar to Pseudofusulina subashienis (Chang), both forms are from the lower portion of Safedaron Formation of Darvas, Central Asia (Leven et al., 1992), which correlates to Artinskian.

The upper portion of the Lenox Hill Formation is characterised by a very distinctive assemblage, which includes: Stewardina laxissima, Chalaroschwagerina nelssoni, Schwagerina dispansa, Schwagerina diversiformis, and Eoparafusulina linearis. These fusulinids have no similarities with those in the Ural, but show quite strong similarity with Tethyan fusulinids. In the Darvas region of Central Asia, Chalaroschwagerina first appears at the base of the Yakhhtashian, which probably is equivalent to the Artinskian (Leven et al. 1992). Ch. nelssoni is similar with Ch. vulgaris, which is wide spread within the Tethys and is the index species of the upper Yakhhtashian (Artinskian). Based on this information we can suggest that the age of upper portion of the Lenox Hill Formation in its stratotype probably is upper Artinskian.

References

Davydov, V. I., Snyder, W. S., & Spinosa, C., 1997, Permian Foraminiferal biostratigraphy and sequence stratigraphy of Nevada - Late Paleozoic Foraminifera their biostratigraphy, evolution and paleoecology and the Mid-Carboniferous boundary: Cushman Foundation for Foraminiferal Research. Spec. no. 36, p. 31-34.

Lucas, S. G., Wilde, G. L., 2000 (This issue), The Bursum Formation Stratotype, Upper Carboniferous of New Mexico, and the Bursumian Stage: Permophiles no. 36.

The Base of the Permian System in China Defined by *Streptognathodus isolatus*

Wang Cheng-yuan
Nanjing Institute of Geology and Palaeontology
Academia Sinica, Nanjing, 210008

Conodonts are the leading fossil group for Permian biostratigraphy. The definitions of all stages of the Permian System should be defined by conodonts.

The Aidaralash Creek section in northern Kazakhstan has been accepted as the Global Stratotype Section and Point (GSSP) for the base of the Permian System (Davydov et al. 1995). *Streptognathodus isolatus* as a new species and definer for the base of Permian System also has been described and proposed (Chernykh, V.V., Ritter, S. M. and Wardlaw, B. R., 1997). In the meantime, eight new species of *Streptognathodus* from the Aidaralash Creek section have been described, and six conodont zones from the late Gzhelian to early Sakmarian have been established (Chernykh, V.V. and Ritter, S. M., 1997). The definition of the base of the Permian System is the first appearance of *Streptognathodus isolatus* within the evolutionary lineage from *Streptognathodus wabaunsensis* to *S. isolatus*.

To use *Streptognathodus isolatus* and the new conodont zones as an international standard for recognizing the base of the Permian System, we can enhance our level of understanding for the base of the Permian System in China.

1. When *Streptognathodus isolatus* as a new species was described, Chernykh et al. (1997) listed a synonym of the species from Chinese literature: *Streptognathodus gracilis* Stauffer and Plummer. Kang, Wang and Wang, 1987, p.196, pl.2, fig.8. This specimen was collected from the lower part of the bed 02 of the Zisong Zhen Formation in Yangchang section in Ziyun County, Guizhou, only 1.00 m higher than the basal boundary of the Zisong Zhen Formation of the Zisongian Stage that is the lowermost stage of Chinese Permian chronostratigraphy (Zhang, Z.H, 1988). *Streptognathodus barskovi* occurs in bed 6 of the Zisong Zhen Formation in Yangchang section. The lower part of the Zisongian Stage (from bed 03 to bed 6) correlates with the Asselian Stage.

2. One specimen illustrated and identified by Wang Zhi-hao and Zhang Wen-sheng (1985, pl.1, fig.10a,b.) as *Streptognathodus wabaunsensis* is a typical *Streptognathodus isolatus*. It occurs in bed 2 (=Limestone L7) of the upper part of the Taiyuan Formation in Yuxian, Henan Province. *Sweeetognathus whitei* occurs in bed 7 (=Limestone L10), 15 m higher than the level of the occurrence of *Streptognathodus isolatus* (i.e. bed 2). Bed 2 (=Limestone L7) should belong to early to middle Asselian Stage. The Taiyuan Formation is Early Permian in age.

3. Two specimens illustrated and identified by Wang Zhi-hao and Li Run-lan (1984, pl. 1, figs.15-16,17-18) as *Streptognathodus gracilis* Stauffer and Plummer from the Taiyuan Formation in Taiyuan and Shuoixian, Shanxi Province, should be assigned to *Streptognathodus isolatus*. The Xishan (west hill) section in Taiyuan contains four limestone layers, in ascending order L1, K2, L4, L5. All limestone layers yield conodonts and *Pseudoschwagerina*. These two specimens of *S. isolatus* occur in the lower part of the Taiyuan Formation. The Limestone L1 (=the...
Miaogou Limestone) is close to the basal boundary of the Permian. Wang et al. (1984) assigned the Taiyuan Formation to the Late Carboniferous. The Taiyuan Formation should assign to the early Permian based on the conodont *Streptognathodus isolatus*.

4. Another three specimens illustrated and identified by Wang Zhi-hao and Wen Guo-zhong (1987) as *Streptognathodus wabaunsensis* (1987, pl.4, figs. 1, 3?, 4) from the Taiyuan Formation in southeastern Shanxi (Lingchuan County) should also be assigned to *Streptognathodus isolatus*. Wang et al. (1987) assigned the Taiyuan Formation to the Late Carboniferous. The Taiyuan System was named by Wong Wen-hao and Grabau (1925), then the people use different names; The Taiyuan System, Taiyuan Series, Taiyuan Formation and Taiyuan Group. Now most geologists in China use the Taiyuan Formation representing the Late Carboniferous deposits in North China Platform. But according to the conodonts from the Taiyuan Formation, this formation should belong to the Early Permian rather than Late Carboniferous.

The Sanlizhung section at Xikou of Zhen’an, Shanxi, studied by Xia et al. (1996), contains very good conodonts, unfortunately Xia et al. (1996) collected samples too small to find *Streptognathodus isolatus*. If we collect enough conodont samples from this section, especially from the bed 1 to bed 4, then *Streptognathodus isolatus* may be found. *Streptognathodus isolatus* is widely distributed both in South China and in North China. The Carboniferous-Permian boundary in China should be defined by the FAD of *S. isolatus*, keeping consistency with the international standard. The taxonomy of genus *Streptognathodus* and the boundary strata between the Carboniferous and Permian should be studied thoroughly in China.

References
Preliminary Cool Water Permian Conodont Zonation in North Pangea: a Review

Charles M. Henderson
Department of Geology and Geophysics,
University of Calgary, Calgary, Alberta, Canada T2N 1N4

Shilong Mei
Department of Geology and Geophysics
University of Calgary and
China University of Geosciences, Beijing 100083

1. Introduction

Conodonts are regarded as the most important fossils for chronostratigraphy of the Permian. One reason for their importance is that they are thought to be more cosmopolitan than other important fossils such as fusulinaceans, ammonoids, brachiopods and corals all of which show clear provincialism within the Tethyan Realm, the Notal and Boreal Realms, and the Gondwana Realm. Kozur (1995a, p. 172) stated: “The conodonts are the only stratigraphically important faunal group, in which provincialism affects only few stratigraphically important forms... Most Permian conodont guide forms can be traced through areas as distant as Bolivia, Texas, Svalbard, Cis-Urals, Pamirs and China, allowing an exact correlation between these areas that belong to different faunal provinces and even to different faunal realms (Notal, Tethyan and Boreal realms).” As a result, a single generalized zonation, usually entitled “standard zonation”, tended to be used (Kozur, 1994; 1995a; 1996; Wang Chengyuan, 1995) with only acknowledgement of facies differentiation and minor discussion on provincialism. This is generally true for Asselian to Artinskian, but provincialism is an important factor in the Kungurian and younger Permian strata impending the development of a standard scheme of global scope. Recent literature indicates that varying levels of provincialism can be seen for conodonts of Asselian (Henderson and Orchard, 1991), Artinskian (Nicoll and Metcalfe, 1998), Kungurian and Guadalupian (Behnken, 1975; Wardlaw, 1995), Lopingian (Mei and Wardlaw, 1996), and Permian-Triassic boundary interval (Matsuda, 1985; Mei, 1996). Limited appreciation for conodont provincialism has caused taxonomic misidentification for Permian-Triassic conodonts at Selong (for detail see Orchard et al., 1994; Mei, 1996) and the construction of non existent zones (for details see Mei and Wardlaw, 1996). A survey of available references of Permian conodonts lead Mei et al. (1999a, 1999c) to recognize an increasing degree of conodont provincialism throughout the Permian. As a result, three provinces, referred to as North Cool Water Province (NCWP), Equatorial Warm Water Province (EWWW) and peri-Gondwana Cool Water Province (GCWP), have been recognized for Permian conodonts (Mei et al., 1999a, 1999c). In contrast to the observations of Kozur (1995b), the conodont successions of Kungurian to basal Triassic of NW Pangea cratonic basins such as Sverdrup and Western Canadian basins are entirely different from that established in EWWW such as in South China (Mei et al., 1999a, 1999c; Mei and Henderson, 2000). The recognition of such distinct provincialism identifies problems in the existing taxonomy of Permian neogondolellids. The introduction of the concept of geographic clines may provide a reasonable solution (Henderson and Mei, 2000). This paper attempts to present a brief review on conodont zones and correlation of NW Pangea cratonic basins including the Phosphoria Basin, the Ishbel Trough, the Sverdrup Basin, the Eastern Greenland Basin and the Zechstein Basin and some Cordilleran terranes (Fig. 1).

2. Cool water conodonts in North Pangea cratonic basins

The main components of cosmopolitan Asselian and Sakmarian conodonts in order of decreasing abundance are Streptognathodus, Adetognathus and Mesogondolella. Provincialism is indicated only by less common endemic elements such as Gondolelloides and New Genus A Henderson (Henderson and Orchard, 1991) in northern Pangea and the relative abundance of Diplognathodus and early Sweetognathus species in equatorial areas (Mei et al., 1999b, 1999c). The Artinskian is marked by flooding at the base and the influx of a cosmopolitan fauna dominated by Sweetognathus whitei and Mesogondolella bisselli, which may correspond to the very interval of final melting of the Gondwana ice cap.

The base of Kungurian is suggested to be defined by the base of the Neostreptognathodus exsculptus Zone (Jin et al., 1997). It is generally thought that the Neostreptognathodus pepuopensis Zone precedes the N. exsculptus Zone. However, a recent study shows that the first occurrences of N. pepuopensis and N. exsculptus nearly coincide and that N. exsculptus might have evolved from an ancestor different from that of N. pepuopensis (Mei et al., 1999b). As a result, the Kungurian could be defined by the first appearance and dominance of Neostreptognathodus which could possibly be polyphyletic.

North Pangea underwent a cooling trend from Middle Kungurian to the end of the Permian (Henderson, 1990; Beauchamp et al., 1999; Mei et al., 1999c). As a result, conodont faunas in North Pangea are very different from those in equatorial areas such as South China, West Texas and Sicily. The following provides a review of Kungurian and younger Permian conodonts in northern Pangea from basin to basin (Figure 1).

2.1 The Phosphoria Basin

Kungurian conodonts in the Phosphoria Basin are dominated by Neostreptognathodus and Mesogondolella is much less common. As a result, the zonation is mainly based on Neostreptognathodus (Mytton et al., 1983; Wardlaw, 1995; Wardlaw et al., 1998). Wardlaw (1999) recognized three Kungurian zones, N. “exsculptus”, N. praya and N. sulcoplicatus. This zonation is roughly similar to those recognized for the Ishbel Trough and Sverdrup Basin (see below). However, definitions of Neostreptognathodus species vary considerably among authors (see Orchard and Forster, 1988; Mei et al., 1999b). Consequently, the taxonomy of Neostreptognathodus species needs to be refined before detailed correlation can be made.

Kungurian Mesogondolella in the Phosphoria Basin are represented by only one species, Mesogondolella idahoensis; it was reported by Youenguist et al., 1951. The holotype of M. idahoensis is from the basal part of the Phosphoria Formation at Bear Lake, Utah, and is characterized by a relatively large cusp, discrete denticles on the middle carina and a low and discrete blade in the anterior platform. It differs from M. idahoensis previously reported from the Equatorial Warm Water Province in South China, Japan, Sicily and West Texas in that the latter has a relatively small cusp, more closely spaced to fused denticles on the middle carina and mostly fused and high blade. Mesogondolella siciliensis, reported
from western Sicily and assigned to Wordian by Kozur (in Catalano et al., 1992; Gullo and Kozur, 1992), is correlated with late Kungurian of South China and is probably equivalent to *M. idahoensis* of the Equatorial Warm Water Province (Henderson et al., 1999; Mei et al., 1999c). Kozur (in Kozur et al., 1994; Kozur, 1995; Kozur, 1998) regarded *M. sicilensis* as a cold water element and attributed the presence of cool water *Mesogondolella* species in tropical Sicily, Pamirs and Darvas to “cold bottom water”, but we believe that the “cool water” faunas are, in fact, typical of a warm water setting (Mei et al., 1999c).

Guadalupian conodonts in Phosphoria Basin are dominated by neogondolellids and *Merrillina*. Like Kungurian *Mesogondolella*, the Guadalupian neogondolellids in the Phosphoria Basin are characterized by a relatively large cusp, compressed and fairly discrete middle carina and low and discrete blade (except *Mesogondolella bitteri*). They show a systematic, minor difference from the equivalent, *Jinogondolella*, of the Equatorial Warm Water Province. As a result, Guadalupian neogondolellids in the Phosphoria Basin were once referred to as *Pseudoclarkina* (Wardlaw and Mei, 1998: Mei et al., 1998; 1999a). The recognition of detailed morphological differences between neogondolellids from both the Equatorial Warm Water Province and the North Cool Water Province has created a major problem in taxonomy. We believe that recognition of a geographic cline would be useful for better understanding this taxonomic problem (Henderson and Mei, 2000; and this issue of Permophiles). Detailed explanation of this geographic cline concept is beyond the present paper, and it will be dealt with later by Henderson and Mei. The present authors now tentatively regard *Pseudoclarkina* as a synonym of *Mesogondolella* from populations with a low percentage of serrated specimens, because the configuration of platform and denticulation in *Pseudoclarkina* can not be differentiated from *Mesogondolella*. Conodont zones in the Phosphoria Basin can be determined, in ascending order, as *M. gracilis, M. phosphoriensis, M. bitteri* and *M. wilcoxi*. Mei and Henderson (2000) showed that this zonation is very different from that established in West Texas (Clark and Behnken, 1979; Wardlaw, 1996) and South China (Mei et al., 1994a; b, c). As a result, precise correlation has not been achieved. The fundamental basis for correlation of Guadalupian conodonts in Phosphoria Basin with those of the Equatorial Warm Water Province is based on an assumption that the serration in the anterior platform of neogondolellids appears simultaneously at the base of Guadalupian in the cool water Phosphoria and Sverdrupe basins and in warm water basins of West Texas and South China. The early serrated specimens in Phosphoria Basin have been referred to *Jinogondolella serrata* (junior synonym of *Jinogondolella nankingensis*). We recognize them as serrated specimens of *M. gracilis* within a geographical cline (Henderson and Mei, 2000).

The *M. bitteri* Zone has been consistently shown to be late Wordian by Wardlaw and Collinson (1979, 1984, 1986). Their most crucial argument is that a bed, overlying an unconformity at the top of the Phosphoria Basin succession and below which *M. bitteri* gave rise to *M. wilcoxi*, has yielded *Merrillina divergens* and *J. aserrata* (Wardlaw and Mei, 1998); the latter is an indicator of Wordian (Jin et al., 1997). We suggest that the reported *J. aserrata* may be *M. wilcoxi*, which leaves the age of the top of the Phosphoria Basin Permian sequence undetermined. The youngest known occurrence of *M. wilcoxi* is in the Timoritites beds of Gordon and Merriam (1961) from the Inyo Mountains, California, thought to be Capitanian. Spinosia (pers.comm., 1999) indicated that ammonoid specimens of Gordon and Merriam are actually *Cycloolobus* (Wardlaw and Mei, 1998, p. 38), which is regarded as Lopingian in age (Zhou et al., 1996). This suggests an even younger age for *M. wilcoxi*.

2.2 The Ishbel Trough

Henderson and McGugan (1986) reported Artinskian and Kungurian conodonts from the Ross Creek Formation of the Telford thrust plate of southeast British Columbia and the Johnston Canyon Formation in Banff, Alberta. The Kungurian conodonts are exclusively dominated by *Neostreptognathodus*, indicative of a typical cool water fauna. As mentioned before, the taxonomy of *Neostreptognathodus* needs to be refined and stabilized before a detailed and useful zonation can be made. In the Urals, the holotype of *N. clarki* was obtained from a sample collected by V.E. Ruzhencev from an outcrop at Aktasty. Kozur (in Kozur and Mostler, 1976) also named *N. ruzhencevi, N. transitus, N. tschuvaschovi* and *N. pequopensis* from the same sample. From the same interval, Chernykh (in Chuvashov et al., 1990) named *N. obliquidentatus*, which was regarded as a synonym of *N. ruzhencevi* by Kozur (1995). A very shallow, medium groove and a smooth transition from the blade to the carina characterize all of these forms. We believe they represent different morphotypes of a single population (Mei et al., 1999b). Specimens referred to as *N. ruzhencevi* from northern Pangea are different from the holotype of *N. ruzhencevi* and are herein tentatively referred to “*N. ruzhencevi*”.

Presently, we tentatively subdivide the Kungurian *Neostreptognathodus* in the Ishbel Trough into two zones, the lower *N. pequopensis* Zone, and the upper *N. sulcoplicatus - “N. ruzhencevi” Zone*.

Unconformably overlying both the Ross Creek Formation and the Johnston Canyon Formation is the Ranger Canyon Formation, which is dominated by bedded diagenetic chert with limestone concretions. Abundant and typical specimens of *M. bitteri* have been recovered from these concretions at Sundance Canyon in Banff area. The top of the Ranger Canyon Formation, which is usually represented by a phosphatic conglomerate bed and separated from the underlying beds by an unconformity, yields abundant *M. rosenkrantzi*. It has been also found abundantly from the equivalent beds of sandy limestone facies to the east within the top of the Mowitch Formation. At Mile 381, Alaska Highway in northeast British Columbia, Chung (1993) reported *M. rosenkrantzi* from the upper part of the Fantasque Formation, poorly serrated specimens of *M. gracilis* from the lower part, and *M. idahoensis* from the basal part. The youngest Permian conodonts are recovered from limestone concretions of the Fantasque Formation at the Ursula Creek section, Williston Lake, northern British Columbia. They are exclusively dominated by *Mesogondolella sheni*. This indicates that the Fantasque Formation at Mile 381, Alaska Highway can be correlated with the Ranger Canyon Formation in southern Ishbel Trough, while at least part of the Fantasque Formation at Williston Lake is younger.

In summary, the Kungurian to Lopingian conodont zones recognized in Ishbel Trough can presently be generalized in ascending order as: *N. pequopensis, N. sulcoplicatus - “N. ruzhencevi”, M. idahoensis, M. bitteri, M. rosenkrantzi and M. sheni* (Table 1). The latter 5 zones are separated from each other by unconformities.
2.3 Sverdrup Basin

Henderson (1981, 1988, 1997) made an extensive study of Permian conodonts from Sverdrup Basin. The Kungurian fauna is dominated by *Neostreptognathodus*, and the Guadalupian and Lopingian faunas are dominated exclusively by *Mesogondolella*. A typical cool water setting is indicated for the Sverdrup Basin by *Mesogondolella* bearing a large cusp, low and discrete denticles on the carina and anterior blade as well as the absence of the *Diplognathodus-Sweetognathus-Iranognathus* lineage since middle Kungurian. As a result, the conodonts from the Sverdrup Basin correlate well with those of the Ishbel Trough and those of the Zechstein Basin (Table 1).

In conclusion, the conodont zones recognized from the Sverdrup Basin correlate very well with those from the Ishbel Trough (Table 1).

2.4 Eastern Greenland Basin and the Zechstein Basin

The Permian conodont fauna from the Ravennejfield Formation in eastern Greenland contains abundant *M. rosenkrantzi* and less common *Merrillina divergens* (Bender and Stoppel, 1965; Sweet, 1976; Rasmussen et al., 1990). In contrast, the Permian conodont fauna in the Zechstein Basin is dominated by *Merrillina divergens* (Szanawski, 1969; Swift, and Aldridge, 1986; Swift, 1995). This may indicate that the eastern Greenland Basin is under a colder setting than the Zechstein Basin. *Mesogondolella* is not as dominant in the Zechstein, but is referred to *M. phosphoriensis* by Swift (1995) and *M. britannica* by Kozur (1998a).

The conodont faunas from both eastern Greenland and the Zechstein Basin are entirely different from the coeval faunas in the Equatorial Warm Water Province such as in South China. As a result, direct correlation of conodonts in Eastern Greenland and the Zechstein Basin with those in the Equatorial Warm Water Province is not likely. The *M. rosenkrantzi* and *Merrillina divergens* fauna in eastern Greenland is interpreted to be Lopingian, as it is associated with *Cylcolobus*, represented by *Cylcolobus kallingi*. *Cylcolobus* has been found to occur with late Wuchiapingian to lower Changhsingian conodonts in the Chhidru Formation of the Salt Range (Wardlaw and Mei, 1999). This is confirmed by Zhou et al. (1996), who suggest that *Cylcolobus* is Wuchiapingian to Changhsingian in age. The Zechstein Formation is referred to Lopingian based on a discovery that the Illawarra Reversal occurs in the upper part of the underlying Rotliegend Formation (Menning, 1995), which is separated from the Zechstein Formation by an unconformity. The Illawarra Reversal has been found to occur in the top part of the Maokou Formation in South China (Heller et al., 1995), in the basal part of the Wargal Formation of the Salt Range (Haag and Heller, 1991) and in the Upper Guadalupian Bell Canyon Formation (Glenister et al., 1999).

The holotype of *M. rosenkrantzi* has a carina with closely spaced denticles and a moderately high blade, showing a close similarity to *M. sheni*. This may indicate that *M. rosenkrantzi* is the direct ancestor of *M. sheni*. The objective superposition of *M. sheni* over *M. rosenkrantzi* in Ishbel Trough also appears to suggest that the *M. rosenkrantzi* and *Merrillina divergens* fauna in Eastern Greenland is younger than the *Merrillina divergens* and *M. britannica* in the basal Zechstein Formation.

3. Conodonts from some Cordilleran Terranes

Global distribution patterns of Permian conodonts suggest that *Vjalovognathus, Gondolelloides* and *Merrillina* are cool water residents, and *Diplognathodus, Sweetognathus* and *Iranognathus* are warm water residents. *Neostreptognathodus* is more common in temperate zones than in the equatorial and colder bipolar zones. *Neogondolellids, Hindeodus* and *Sweetina* are cosmopolitan and the most temperature tolerant. *Neogondolellids* persist as *Mesogondolella* with a big cusp and low and discrete blade in bipolar temperate zones during Kungurian through Lopingian, except *Mesogondolella bitteri*, which shows similarity to *Clarkina*. However, in equatorial regions such as South China, Sicily and West Texas they differentiated into *Mesogondolella* with a small cusp, a carina with tightly spaced to fused denticles, and a high and mostly fused blade during Kungurian, *Jinogondolella* during Guadalupian and *Clarkina* during Lopingian. Three provinces, the North Cool Water Province (NCWP), the Equatorial Warm Water Province (EWWW) and the peri-Gondwana Cool Water Province (GCWP), were well established by Kungurian (Mei et al., 1999a, 1999c). The *Diplognathodus-Sweetognathus-Iranognathus* complex becomes confined to the Equatorial Warm Water Province since middle Kungurian due to the early cooling event in northern Pangea (Mei et al., 1999b).

The well established Permian conodont distribution and provincialism pattern mentioned above allows us to precisely determine the nature of conodont faunas from some of the Cordilleran terranes. Conodonts from the Cache Creek Terrane are represented by abundant *Jinogondolella* and a few *Sweetognathus* in Guadalupian, *Clarkina* and *Iranognathus* in Wuchiapingian, and exclusive dominance of *Hindeodus* around the Permian-Triassic boundary interval (Beyers and Orchard, 1991; Orchard et al., 1999, 2000). As a result, they are typical of warm water fauna (Orchard et al., 2000; Mei and Henderson, 2000). In the Baker Terrane, Eastern Oregon, Nestell and Orchard (2000) reported a Kungurian conodont fauna with *Mesogondolella idahoensis* and two species of *Sweetognathus*. The specimens they referred to as *Mesogondolella idahoensis* have a relatively small cusp, closely spaced to fused carinal denticles, and a largely fused and high blade. They are almost identical to specimens we found from the upper Kungurian in South China and could be referred to *Mesogondolella siciliensis*. The fusulinacean found in the same locality as the conodont fauna in the Baker Terrane contains *Neoschwagerina craticulifera* (Nestell and Orchard, 2000; and personal communication with Nestell at the GSA Cordilleran section meeting). This also matches the data we obtained from the Luodian section, South China, where *Neoschwagerina craticulifera* co-occurs with *M. siciliensis* in the upper Kungurian.
Figure 1 Relative paleogeographic positions of Cordilleran accreted terranes, conodont provinces and Pangea during the Guadalupian. Paleocontinent reconstruction is modified after Ziegler et al., 1996.

Table 1. Northern Pangea Cool Water Conodont zones and Correlation.
Figure 2. Kungurian to Lopingian conodont locations in the Sverdrup Basin
Consequently, like the conodonts of South China and Sicily, the Baker Terrane conodonts are typical of warm water setting.

Conodonts reported by Orchard (1987) from Fennel Formation near Seymour Arm, British Columbia, a unit that occurs in the Slide Mountain Terrane, contains serrated specimens of *M. gracilis* that are characterized by a relatively large cusp, and discrete denticles and low blade. The fauna is similar to the coeval fauna in the Sverdrup Basin, and typical of cooler water settings. Conodonts from the Quesnellia Terrane Harper Ranch beds near Kamloops, south-central British Columbia are represented by fairly abundant *Neoestrepognathodus,* but *Sweetognathus* and *Diplognathodus* in Kungurian, and primitive forms of *Jinogondolella nankingensis* in Early Guadalupian also occur (Orchard and Forster, 1988). This fauna may be transitional between the Equatorial Warm Water Province and the North Cool Water Province, but it is more typical of a warm water setting.

The Upper Permian fauna reported by Clark *et al.* (1997) from the Northwind Ridge of the Arctic Ocean were misidentified by Kozur (1998b, p. 249) as containing early Lopingian species such as *Clarkina postbitteri* and *C. niuzhuangensis.* The neognodellids in this fauna are similar to Triassic *Neogondolella* in configuration of denticulation and platform and clearly different from the Lopingian *Clarkina* in South China.

The position of some Cordilleran terranes are shown in figure 1, interpreted in part on the basis of conodont provincialism.

Acknowledgements

Charles M. Henderson and Shilong Mei acknowledge support received from the industry-supported Applied Stratigraphy Research Group at the University of Calgary. Shilong Mei acknowledges support from the Open Laboratory of Modern Stratigraphy and Paleontology in Nanjing Institute of Geology and Paleontology, and funding from a key state project funded by the State Science and Technology Commission of China. We would also like to gratefully acknowledge benefits from discussion with M.K. Nestell and M. J. Orchard.

References

Henderson, C.M., 1990. Dynamic conodont biofacies in Upper Carboniferous and Permian strata in the Sverdrup Basin, Canadian Arctic Archipelago. Abstracts with Programs to the
24th Annual Meeting, South-Central Section, the Geological Society of America with the Midcontinent Section of the National Association of Geology Teachers, the Pander Society, and the South-Central Section of the Palaeontological Society. March 5-6, 1990, Oklahoma State University, Stillwater, Oklahoma. 22(1), 8.

Matsuda, T., 1985. Late Permian to Early Triassic conodont paleobiogeography in the “Tethys Realm”. In: Nakazawa, K., Dickens, J.M. (Eds.), the Tethys, her paleogeography and paleobiogeography from Palaeozoic to mesozoic. Tokai University Press, 157-170.

Paleobotany of the Upper Carboniferous/Lower Permian of the southern Urals. Part 2. Roots and Woods

S.V. Naugolnykh

Geological Institute, Russia
Pyzhevsk
Moscow, Russia 109017

The present paper is a continuation of the preliminary description of the Upper Carboniferous - lowermost Lower Permian flora discovered from the famous Aidaralash section of the Southern Urals (Naugolnykh, 1999) and some other localities of the same region. Fossil wood and root remains are briefly characterized in this part. The remains were studied under SEM (Stereoscan 600).

Dadoxylon sp. Fig. 1, fig. 2. A small fragment of gymnosperm wood (perhaps of cordait or conifer affinity) 20 mm long and 9 mm wide. Since the wood is petrified, some data of its anatomical structure were obtained. Secondary xylem consists of the tracheids and parenchymatous tissues. The tracheids have round bordered pit pairs (pores) of araukaroid type, which are located on radial cell walls. Diameter of the pores together with borders (limbs) is 8 μ. Diameter of the pore itself is 2 μ. Pore border is wide and bears concentric ribs and furrows between ribs. Single bordered pit pair demonstrates a torus, attached to one of the pore walls and covering the pore perforation. Crassulas are absent. Xylem rays are relatively rare, homocellular, one cell wide. Commonly, the rays consist of two vertical cells in number, rarely one or three cells. In a single case, the ray has more than five vertical cells. Ray cell walls are thin. Tracheid walls are considerably thicker. Tracheids are polygonal in cross section, their diameter is 9-15 µ. Tracheid walls bear well-developed stair-like thickenings. Central part of the wood is not preserved. Because of this it is not possible to study any primary tissues.

Remarks. Several different form genera are used for Angaran Upper Paleozoic fossil wood of gymnosperms (Mesopitys, Coenoxylon, Dadoxylon, Araucarioxylon). The most popular names are Dadoxylon Endlicher 1847 and Araucarioxylon Krausel 1870. The synonymy of these genera is suggested (Vogellehner, 1964; Stewart, 1983; Stewart, Rothwell, 1993). Commonly the name Dadoxylon is used for Paleozoic woods, and the name Araucarioxylon is preferred for the same type or very similar woods from Mesozoic. At the same time, type species of Araucarioxylon (A. carbonaceum (Witham) Krausel) is described from the Carboniferous of England (Schimper, 1870; Witham, 1833). Although the same type of woods from the Permian of Angaraland were determined as Dadoxylon, Araucarioxylon and Araucarites spp. (Naugolnykh, 1995; Kossovskaya et al., 1996), I prefer to use the name Dadoxylon because of its priority.

Locality. Aidaralash, layer 21, Spharoschwagerina vulgaris-S. jasiformis zone, Asselian.

Some more fossil woods of Calamites spp. (Calamostachyales order) as well as conifer trunk of Tylodendron sp. (Coniferales order, Walchiaeae family) were collected from the Asselian (layer 21) of Aidaralash section, but these remains need more detailed investigation.

The present project was supported by the Russian Foundation of Basic Research, grant N 00-05-65257.

References

Figure 1. Dadoxylon sp. Inner structure of petrified wood in SEM. Southern Urals, Aidaralash, layer 17/2, Daixina bosbytaensis-D.robusta zone, Upper Gzhelian. Scale bar: 4 mkm (C, D); 10 mkm (A, E); 20 mkm (B); 40 mkm (F).
Figure 2. Dadoxylon sp. Petrified wood: some morphological details in drawings after SEM microphotography. Southern Urals, Aidaralash, layer 17/2, Daixina bosbytauensis-D.robusta zone, Upper Gzhelian. Magnification: x 900 (Figs. 2, 3, 6); x 1800 (Figs. 1, 5); x 4500 (4).
Figure 3. *Radicites* sp. Surface structure of petrified root in SEM. Southern Urals, Aidaralash, layer 21, *Spharoschwagerina vulgaris-S.fusiformis* zone, Asselian. Magnification: x 10 (Fig. 1); x 450 (Figs. 2-4).
Designing A Computer-Based Information System for Quantitative Palaeobiogeography of Permian Brachiopods

Edward C. Zhang, G.R. Shi and Shuzhong Sheng
School of Ecology & Environment
Deakin University, Rusden Campus,
662 Blackburn Road, Clayton,
Victoria 3168, Australia

Wanlei Zhou
School of Computing and Mathematics
Deakin University, Rusden Campus,
662 Blackburn Road, Clayton,
Victoria 3168, Australia

The aims of biogeography are to (1) establish comprehensive data bases of the distributions of concerned taxa, (2) analyze the data bases and derive patterns, and (3) interpret the results (Rosen, 1992).

Neither data nor maps are static information in paleobiogeographic research. They need to be frequently revised and updated. New taxa and localities are continuously reported and should be added to our database. Also, old data may be emended and removed. It keeps palaeobiogeographers and palaeontologists busy in data compilation and calculation for the purpose of palaeobiogeographic pattern analysis.

Our current project aims to build a computer-based information system specifically for the palaeobiogeography of Permian Brachiopoda. We prefer to call it BrachBase. This information system will improve the productivity of palaeontologists and palaeobiogeographers by automating labor-intensive tasks and eliminating nonvalue-added processes. The distinction of this information system lies in:

1) The database of our system holds the detailed distribution records of every brachiopod species in each of the smallest time and space units, stage-by-stage and station-by-station.
2) It is the first attempt that tries to connect together the three major stages in palaeobiogeographic research, i.e., data acquisition and editing, data analysis, and graphic pattern presentation or map generation, in a whole computer based information system.

1. Some Terms Used in the Information System
1.1 Operational taxonomic units (OTUs)

The database is built up to incorporate all taxonomic information about species, genera, family, order, and class, as well as their geographic distribution. The OTUs adopted in this project for palaeobiogeographic pattern analyzing can be genus or species, whichever we like. Choices will be provided for selection before running any queries.

1.2 Operational geographical units (OGUs)

The OGUs used in this project are stations. There are several methods to define stations, e.g., unit areas (equal sized), geological entities, etc. The OGUs adopted in BrachBase are hybrid unit areas, i.e., 5-degree by 5-degree latitude/longitude grid cells. Each of the stations will be granted a Station ID as (5\(m+3\), 5\(n+3\)) which implies that this station spans from 5\(m \) to 5\(m+5\) longitude and from 5\(n \) to 5\(n+5\) latitude (Both \(m\) and \(n\) are integers here, -36\(\leq m<36\), -18\(\leq n<18\)). Please note that we use negative numbers when specifying west longitude and south latitude coordinates.

There are some exceptions for the format of station ID; for example, when there is a tectonic boundary across an equal area station. At this case, we divide one 5-by-5 degree station into two or more stations according to their tectonic identity. Then mean longitude and mean latitude are used directly (excluding decimals) as the station ID of each station.

We will use station ID, instead of station name, prevalently in different tables in our database to avoid any confusion and mistakes, but we will be able to look up a station’s name at any time. A station’s name usually is its normal geographic location name and comes from a widely recognized gazetteer.

1.3 Time span

The choice of time parameter is critical in analysis of fossil distributions. The smallest practicable time interval is desirable because interpretation of an instant of geological time is the goal. A biozone would be ideal, but few are globally recognizable. So, stages are used as the primary time attribute in our system.

1.4 GIS or DTMS

A geographic information system (GIS) is a computer-based information system. The feature of a GIS tools package or GIS technology is its ability to integrate common database operations such as query with the unique visualization benefits offered by maps. These abilities distinguish GIS from other information systems.

An information system can be defined as a combination of computer hardware, software, data and people (Hoffer, 1999), resulting in some people giving GIS a very broad definition the same as a common information system (Taylor, 1991).

Normally what we can buy from the vendor is a GIS tools package (like GeoMedia Professional, ARC/INFO, etc), not an information system. The information system needs to be carefully designed first according to our specific requirement, and the data structure of the system needs to be identified and verified before we can implement it with a set of selected software. The database management system (DBMS) does not need to be included in the GIS tools package, i.e., purchased from the same vendor. It can be any DBMS product available on the market.

Just like the Geographic Information Systems, Desktop Mapping Systems also allow us to integrate conventional database data with maps and generate information and results that are not available from the database or maps alone. Desktop Mapping Systems (DTMS), such as MapInfo (MapInfo Corporation, 1999), provide us an economical and approachable alternative to a full-blown GIS.

Desktop Mapping Systems are already acquiring many of the capabilities of GIS, either directly or as add-on software, in much the same way that word processors have acquired many of the attributes of desktop publishing.

2. Software Components and Context Level Data Flow Diagram

The BrachBase information system constructed in this project will consist of three core parts:

1) A relational database management system (we chose MS Access here) for data input, storage and management.
(2) Analytical software package (we chose STATISTICA as principal analytical software and PATN as supplementary one) for data analysing.

(3) A desktop mapping system (we chose MapInfo Professional) for the integration of RDBM’s tabular data with geographic maps.

The data flow between the different system components can be shown by the diagram in figure 1.

Because both STATISTICA and MapInfo support ODBC - an industry standard interface to SQL-based database engines, these two software packages have a flexible access to a wide variety of database management files, certainly including MS Access files. (Table 1 and 2, Figure 2)

Table 1. Document Entities and Attributes in the System

<table>
<thead>
<tr>
<th>Entities</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>class, order, family, genus, species, diagnosis, pictures, species reference</td>
</tr>
<tr>
<td>Station (Time-Independent) Properties</td>
<td>station ID, mean longitude, mean latitude, station name, country, station reference</td>
</tr>
<tr>
<td>Station (time-dependent) Properties</td>
<td>stage, station ID, palaeolatitude, tectonostratigraphic units, province</td>
</tr>
<tr>
<td>Species Distribution Through Time and Space</td>
<td>Species herein, species in original report, station ID, stage, stratigraphic unit (formation), lithology, and distribution reference</td>
</tr>
<tr>
<td>Province-Key Species Relation</td>
<td>stage, province, province reference, 1st key species/genus, 2nd key species/genus, 3rd key species/genus, ... 40th key species/genus (If we have fewer than 40 key species/genus, the attributes just get null value. The database is designed to be able to store as many as 40 key species/genus. The rest will be ignored)</td>
</tr>
</tbody>
</table>

Table 2. Identifying the Candidate Keys and the Primary Key

<table>
<thead>
<tr>
<th>Entities</th>
<th>Candidate Keys</th>
<th>Primary Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>species</td>
<td>species</td>
</tr>
<tr>
<td>Station (Time-Independent) Properties</td>
<td>station ID, station name, (mean longitude, mean latitude)</td>
<td>station ID,</td>
</tr>
<tr>
<td>Station (time-dependent) Properties</td>
<td>(stage, station ID)</td>
<td>(stage, station ID)</td>
</tr>
<tr>
<td>Species Distribution Through Time and Space</td>
<td>(stage, station ID, species herein) (composite key consists of three attribute)</td>
<td>(stage, station ID, species herein)</td>
</tr>
<tr>
<td>Province-Key Species Relation</td>
<td>(stage, province) (composite key consists of two attributes)</td>
<td>(stage, province)</td>
</tr>
</tbody>
</table>
Species Distribution Through Time and Space

Station (Time-Independent) Properties

OTU

Station (time-dependent) Properties

Province-Key Species Relation

Note: “→” refers to one to many relation(s)

Figure 2. The Entity – Relationship Diagram

Figure 3. The relationship of Base Tables
vii. Station (Time-Independent) Properties (country, station ID, mean longitude, mean latitude, station name, station reference)
viii. Province–Key Species Relation (stage, province, province reference, 1st key species/genus, 2nd key species/genus, 3rd key species/genus, ¼ 40th key species/genus)

4. Physical Database Design with MS Access

There are many database management softwares available on the market today for our choice, e.g., Oracle and MS Access (O’Brien, 1997; Simpson, 1997), etc. We decided to choose MS Access just because all PCs in the library and in the computer labs at Deakin University have been installed with this software. All staff and students have ready access to these facilities for their study and research activities without further payment.

Eight base tables are recognized and built in Access DBMS. The relationship charts of Base Tables is shown in figure 3

5. User Interface

Our system requires a lot of user interfaces, which can be arranged in a hierarchic architecture, to navigate between many different applications. The top-level user interface, or the main switchboard is shown figure 4.

References

Geographical Cline in Permian Neogondolellids and Its Role in Taxonomy: A Brief Introduction

Charles M. Henderson
Department of Geology and Geophysics
University of Calgary, Calgary, Alberta
Canada T2N 1N4

Shilong Mei
University of Calgary
Calgary, Alberta, Canada T2N 1N4
China University of Geosciences
Beijing 100083, China

The recognition of profound Permian conodont provincialism since Kungurian (Figure 1), which is represented by the North Cool Water Province (NCWP), Equatorial Warm Water Province (EWWP) and peri-Gondwana Cool Water Province (GCWP) (Mei et al., 1999a, b; Mei and Henderson, 2000; Henderson and Mei, 2000a, this issue), identifies important problems in the existing taxonomy of Permian neogondolellids and correlation. As a result, Henderson and Mei (2000b, c) introduced the concept of geographical clines to Permian conodonts as a possible solution. This report attempts to give a brief introduction of applying the geographical cline concept to Permian conodonts by showing examples in Permian neogondolellids in comparison with a modern biotic example. A lengthy manuscript for formal publication is in preparation.

A cline is defined as a continuous and gradational change in some morphologic character that varies with geographic position. Biologists recognize this concept within many extant biotic groups, but clines are rarely discussed in the paleontological literature. The paleontological literature does often refer to continuous and gradational chronomorphoclines, but these are evolutionary changes within lineages. Clines are an indicator of continuity of populations and a prime example of the effects of natural selection operating on environmental change. Speciation would occur when this continuity is broken up by some isolating mechanism.

1. A modern example of geographical cline

Before applying the geographic cline concept to Permian conodonts, we will first examine a modern example of a geographic cline within the well known fruit fly, Drosophila subobscura.

Drosophila subobscura is a temperate-zone fly native to a region stretching from Spain northward into southern Scandinavia and from North Africa eastward to the Middle East (Huey et al., 2000 and Schwarz, 2000). Drosophila subobscura has occupied temperate Europe for about 10,000 years, since the last ice age, and exhibits a geographic pattern of increasing wing size in areas of higher latitude. Thus wings of flies in Denmark are 4 percent longer than those from Spain (Figure 2). Huey et al. (2000) believe that this probably has some connection with temperature, but the precise reason has yet to be determined.

Drosophila subobscura was accidentally introduced into North and South America. In South America, it was first found near the Chilean port city of Puerto Montt in 1978. The flies quickly colonized much of coastal Chile, although scientists detected no change in wing length a decade later. They were initially discovered in North America in the early 1990s in Port Townsend, Washington. Both introduced populations are nearly identical genetically, leading geneticists to believe they stem from a common stock that hitchhiked on a ship that probably stopped in Chile and in North America sometime around 1978. Since then, the flies have spread over an area spanning more than 16 degrees of latitude in Chile and across the Andes Mountains into coastal Argentina. In North America, D. subobscura has spread from Santa Barbara, California, north to the tip of Vancouver Island in Canada. They also have been trapped as far east as near Salt Lake City.

Figure 1 Relative paleogeographic positions of Cordilleran accreted terranes, Conodont Provinces, and Pangea during Guadalupian. Paleocontinent reconstruction is modified after Ziegler et al., 1996.
To check for evolutionary change, Huey and his colleagues trapped flies at 11 North American sites in 1997 and 10 in Spain, France, the Netherlands and Denmark in 1998. Then they raised five or six generations of flies in similar environments, measuring the wing lengths of the last generation. Biologists use wing length because it is an easily measured and highly repeatable index of body size.

Measurements of the North American flies revealed that these introduced flies had evolved a similar pattern in less than two decades. Like the European flies, higher latitude female flies were four percent larger than those from central California. For males, however, the size difference was only 1 to 2 percent. The two continental populations show subtle differences in the part of the wing that lengthens with increased latitude; presumably natural selection is operating on a different gene, but the end result of the cline is similar. European flies have what could be called longer “biceps” while North American flies have longer “forearms.”

Knowing that evolutionary change pattern is the main concern of Huey et al. (2000), we are especially interested in the examples of latitudinal cline presented by them. Figure 3 is from Huey et al. (2000) and shows that the latitudinal cline in wing size of both native European and introduced North American D. subobscura. Figure 3A shows that the wing size of both male and female D. subobscura in both European and North American increases with latitude. However, the increasing of wing size in the male North American D. subobscura is less than in the male European D. subobscura. Figure 3B shows the relative length of the basal portion of vein IV versus latitude for female D. subobscura. As shown clearly, in the native European populations, the relative length of the basal portion increases with latitude, whereas in North American, it decreases with latitude. The male D. subobscura shows the similar pattern. As a result, the wing section controlling the cline in wing length differs between North American and European populations.

2. What we learn for Permian conodont taxonomy from the modern example of geographical cline?

The modern example mentioned above reminds us once again that Permian conodont taxonomy has to be based on as large a number of specimens (a population) as possible so as to achieve a useful and powerful solution in subdivision and correlation. As we can see in Figure 3, measurements of rare specimens in native European D. subobscura population fall into the scope of the North American population, and vice versa. The difference between these two subpopulations can be recognized only by the entire population.

The other point we have learned is that the configuration of the wing of D. subobscura is one of the key, stable and reliable characters in identification. Similarly, we believe the configuration of denticle in Permian neogondolellids is the key and reliable char-
acter in identification, as shown by an example given by Mei et al. (1998) for Changhsingian conodonts at Meishan.

Wardlaw and Collinson (1979, p.156) stated: “Representatives of Upper Permian species of Neogondolella show much morphologic variability and therefore are difficult to classify. Rare individuals within a population may exhibit one or several characteristics that are thought to be diagnostic of another species. The analysis of large numbers of individuals and the use of several characters to define a species are necessary to resolve this problem.” Mei (1996) and Mei et al. (1998b) pointed out that three morphotypes, i.e., round-morphotype, square-morphotype and narrow-morphotype can be recognized in a neogondolellid population, and they represent distinct variants of a single population (Mei et al., 1998b, p. 216). Mei et al. (1998b, 214) stated: “that the most consistent and reliable character in Lopingian neogondolellids is the general configuration of the denticles, which can be used to define a natural population or apparatus species. Of secondary importance is the shape of the platform, which can be used only to identify a form species within a natural population, as did most previous authors, or a temporal subspecies.” The taxonomy of Permian conodonts based on denticulation, population and ontogeny was first demonstrated by Sweet (1973), and has been proven successful by Orchard et al. (1994) and Mei (1996) in clarifying the confusion of the Selong

Figure 3 Latitudinal Cline in Wing Size of D. Subobscura (after Raymond et al., 2000)
3A: Female wing length increases with latitude in the same pattern in both North America and Europe; Male wing length also increases with latitude but slower in North America than in Europe.
3B: Relative length of the basal portion of vein IV in females versus latitude. Males show the same pattern.
and Meishan Permian-Triassic boundary conodonts, and Mei et al. (1994a, b, c, 1998a, b). Mei and Wardlaw (1996) and Sweet and Mei (1999) in establishing and correlating Guadalupian and Lopingian conodont zones. It is this taxonomy that has led Mei et al. (1999a, b) and Henderson and Mei (2000a, this issue) to recognize the profound provincialism for Permian conodonts. It is by looking at the detailed configuration of denticulation that has led Henderson and Mei (2000b) to recognize the geographic cline in Permian neogondolellids (see below).

3. Examples of geographical cline in Permian conodonts

A geographical cline can be recognized for Permian neogondolellids by looking at the denticulation, especially the cusp, how discrete the posterior and middle denticles are, and how discrete and high is the anterior blade. Permian neogondolellids persist as *Mesogondolella* with a big cusp and low and discrete blade in bipolar temperate zones during Kungurian through Lopingian, except during the *Mesogondolella bitteri* Zone when it resembles *Clarkina*. In equatorial regions they differentiated into *Mesogondolella* with a small cusp, a tightly spaced to fused posterior and middle carina, and a high and mostly fused blade during Kungurian, *Jinogondolella* during Guadalupian and *Clarkina* during Lopingian.

Figure 4 shows a geographic cline for neogondolellid conodonts around the Cisuralian-Guadalupian boundary. The specimens from the type section in the Guadalupe Mountains, West Texas are characterized by a small cusp, closely spaced posterior and middle denticles and a largely fused and high anterior blade. The specimens from the Sverdrup Basin are marked by a relatively large cusp, discrete posterior and middle denticles, and a discrete and low cusp. The specimens from the Phosphoria Basin in Idaho are transitional in denticle configuration. A similar cline has also been recognized by Mei and Henderson (2000) for conodonts from the Cache Creek, Quesnellia and the Slide Mountain terranes (see both figure 1 and Figure 5).

We believe that further detailed study will reveal more examples. One of them may be represented by *Clarkina liangshanensis* in South China with a reduced cusp, largely fused carina and a high and mostly fused blade, “*Clarkina*” *jesmondi* from the Cache Creek Terrane with a big cusp, closely spaced to fused carina and a high and largely fused blade, and *Mesogondolella rosenkrantzi* in Sverdrup with a large cusp, discrete or slender carina and a mostly discrete and low blade. Another example can be recognized for late Kungurian neogondolellids (Henderson and Mei, 2000b). *M. idahoensis* from the cool water provinces, like its holotype in Idaho, is characterized by a large cusp and a considerably discrete and low blade. Its equivalent in the Equatorial Warm Water Province such as South China, Sicily and West Texas, is marked by a relatively small cusp, mostly fused carina and a mostly fused and high blade, as exemplified by *M. siciliensis*. Detailed explanation of these examples is beyond the scope of this brief report.

![Figure 4. Geographical cline along northwest margin of Pangea. Size of specimens shown in the figure are proportional.](image-url)
Acknowledgements

Charles M. Henderson and Shilong Mei acknowledge funding from the industry supported Applied Stratigraphy Research Group at the University of Calgary. Shilong Mei acknowledges support from the Open Laboratory of Modern Stratigraphy and Paleontology in Nanjing Institute of Geology and Paleontology, and funding from a key state project funded by the State Science and Technology Commission of China.

References:

Conodont definition on the basal boundary of Lopingian stages: A report from the International Working Group on the Lopingian Series

Jin Yugan
Nanjing Institute of Geology and Palaeontology
Chinese Academy of Sciences, Nanjing 210008, China
Email address: ygjin@public1.ppt.js.cn

with a report from Charles Henderson and a second from Bruce Wardlaw and Shilong Mei

A. The base of the Wuchiapingian Stage.

In Palaeoworld No 9 (Jin et al., 1998), three papers were published on the Penglaitan Section in South China and the conodonts from this section and its equivalents in SW USA. Two papers discussing the potential stratotype points at the Penglaitan section, which reflect controversy over the stratotype point that occurred during discussion at the Calgary meeting, were published in March (Wang, 2000; Jin, 2000a). We feel that a real picture of the stratigraphic distribution of the conodonts is primarily important, and the selection of a boundary level is secondary because the difference between two proposed points is trivial and a GSSP is internationally conventional. In order to clarify the confusion it was necessary to make an examination on relevant samples in a third laboratory. We sent samples from the Penglaitan Section, which are much larger in size than previously studied to Dr. Henderson. Thanks to his cooperation, the first report on the results of studying samples from the beds around the potential boundary level of the Penglaitan Section was provided in March. Clearly, the results are consistent with those made by Dr. Mei and Wardlaw in 1994 and 1998.

Meanwhile, Dr. Wardlaw’s revised scheme of Permian chronostratigraphic subdivisions in Permophiles 35 surprised many colleagues because he ignored the official decision of the subcommission. The subcommission passed the decision in 1996 that the indicative fossil is Clarkina postbitteri, not C. dukouensis, for the base of the Lopingian Series. In addition, recently, the subcommission voted a proposal that J. nankinensis, not J. nankinensis and Neostreptognathodus newelli, for the base of the Guadalupian Series. In his scheme, Wardlaw uses the altidaensis Zone instead of several zones that he and Mei recognized in the Penglaitan Section.

B. The base of the Changhsingian Stage.

In 1981, Zhao et al. recommended formally Section D in Meishan, Changxing County, Zhejiang Province of China as the stratotype of the Changhsingian Stage, while the base of the stage is located at the base of bed 2, the horizon between the Clarkina orientalis Zone and the Clarkina subcarinata Zone. Last June, I received a proposal from Drs. Wardlaw and Mei in which the FAD of Clarkina subcarinata (sensu strictu) at 13.71 m above the base of the Changxing Limestone at the Meishan (D) Section is recommended as the indicator of the basal boundary of the Changhsingian Stage. However, Mei suspected that there should be a cline from C. orientalis/inflecta to C. wangi/subcarinata around the base of the Changxing Limestone.

This proposed boundary level is 38 cm below the top of Bed 8.
Permophiles Issue #36 2000

The occurrences of some important fossils that used to be referred to as Changhsingian age are as follows.

Ammonoids of the Tapashanites Zone occur in the top 50 cm of Bed 8, including Changhsingoceras sp., Rongjiangoceras sp. The fusulinid Palaeofusiella simplex appears 4.20m below the level, and the advanced forms of Palaeofusiella, such as P. sinensis, which are indicative of the Changhsingian Stage, appeared significantly later in this section than in other sections. The foraminifer Colaniella nana comes out 3.0 m above the level, and C. minima, 3 m below it. Bed 7 is a clay bed with an isotopic age (TIMS) of 253.4±0.2 (Bowring et al., 1998). Magnetostratigraphically, the suggested boundary level locates in the top of a reversed polarity bed of N2P magnetopolarity Zone (Li and Wang, 1989; Jin et al., 2000b).

The following is a report from Dr. Henderson on the conodonts from the beds around the Guadalupian- Lopingian Boundary in the Penglaitan and Tieqiao sections, Laibin County, Guangxi of China, and a proposal from Drs. Wardlaw and Mei on the conodont definition of the basal boundary of the Changhsingian Stage.

The conodonts from the beds around the Guadalupian- Lopingian Boundary in the Penglaitan and Tieqiao sections, Laibin County, Guangxi of China (Henderson)

This report provides the results of samples 116-4f, P6i (lower and upper parts) from Penglaitan and TA6h from Tieqiao. Other samples from these sections are currently being processed or picked, but these three samples are perhaps the most important. Shilong Mei and I looked at these samples independently and then compared notes. Our opinions are exactly the same and are indicated below.

Tieqiao TA6h Sample
- Sample weight = 12.02 kg
- Lithology = packstone, perhaps slightly dolomitized which accounts for slightly poorer preservation compared to Penglaitan.

Fauna: All specimens are Jinogondolella granti. We did not find any “Sweetognathids” as reported previously by Bruce. There are no specimens referable to Clarkina; there is no overlap of Jinogondolella and Clarkina. About 2% of the specimens are somewhat transitional between J. granti and C. postbitteri, but the lower blade and more fused carina are clearly J. granti characters despite the smoothness of the platform outline. Additional organic residue includes fish teeth.

Penglaitan 116-4f Sample
- Sample weight = 22.5 kg
- Lithology = crinoidal packstone
- Fauna: Over 400 specimens of Jinogondolella granti. Includes all growth sizes as well as numerous parts of the rest of the apparatus. Additional organic material include fish teeth and foram internal molds.

Comments: A few specimens are transitional to J. xuanhanensis or are J. xuanhanensis. Most specimens have various degrees of serration. Some specimens (less than 5%) have relatively smooth anterior platform margins, but these all have the denticulation of J. granti (mostly fused carina with low and somewhat discrete, but closely spaced denticles on the anterior blade). These smooth specimens would be referred to Mesogondolella altudaensis or Clarkina altudaensis by some other authors, but they are clearly below.

Figure 1. Clarkina species that characterize the Changxing Limestone at Meishan, in ascending stratigraphic order. Photos from Mei et al. (1998).
part of the *J. granti* population in my opinion if you consider carinal characteristics as the primary taxonomic character. Specimens of *Jinogondolella altuandaensis* from its type locality are typically wider and shorter. There are no specimens that even come close to that figured recently by Wang (2000; Pl. 1, fig 13; the sample number on his Fig. 1 chart and plate description is labeled as 117-4f, but this is actually 116-4f). His specimen is clearly *C. postbitteri*, but it is totally different from any specimen that we have from the same sample. There is no overlap of *Clarkina* and *Jinogondolella* in this sample on the basis of my analysis.

Penglaitan P6i Sample; lower part
- **Sample** weight = 8.26 kg
- **Lithology** = coarse crinoidal grainstone
- **Fauna**: No conodonts were recovered; not even a fragment. Additional organic residue includes fish teeth, shark dermal denticles, a biserial foramin internal mold (nodosarid?). Small pyrite spheres also noted.

Penglaitan P6i upper part; sample was subdivided into two components on the basis of lithology variation.

 P6i upper part (a)
 - **Sample weight** = 10.27 kg
 - **Lithology** = mostly packstone, some grainstone with some carbonate mudstone intraclasts
 - **Fauna**: Abundant specimens of *Clarkina postbitteri*. There are no specimens of *J. granti*; there is no overlap. However, about 4% of the specimens are somewhat transitional with *J. granti* by having more closely spaced denticles and less reduced anterior platform. However, the anterior blade and other carinal characteristics are that of *C. postbitteri*. We also recovered 4 specimens of *Iranognathus cf. mowschovitschi*. Fish teeth, shark denticles, and gastropod internal molds were also found.

 P6i upper part (b)
 - **Sample weight** = 5.32 kg
 - **Lithology** = mudstone intraclastic breccia and some packstone
 - **Fauna**: Fairly abundant specimens of *C. postbitteri*. No Sweetognathids and no *Jinogondolella*. Numerous solitary rugose corals recognized.

Interpretation: P6i (lower part) is the top of a sequence where very shallow grainstone carbonate forms the top of a HST or lower LST. P6i (upper part) is the beginning of the succeeding sequence (upper LST or early TST; I prefer to call these rocks the “intersequence” as they are deposited during the time between the youngest rocks beneath the sequence boundary and the oldest rocks above the sequence boundary where the sequence boundary is clearly unconformable). The sample contains numerous carbonate mudstone intraclasts which give the limestone a breccia appearance when etched. The same thing was noted in a sample from Tieqiao that I collected with Bruce last year (bed 8C; which should be an equivalent bed and contains only *C. postbitteri*). These are not old reworked clasts, but rather intraclasts ripped up from an adjacent environment (probably by storms or slight sea level fluctuations during the early TST or upper LST); the clasts contain the same conodont fauna as the surrounding matrix. The breccia nature is not obvious until the samples are etched during processing.

There is no overlap between *Jinogondolella granti* and *Clarkina postbitteri* in the reported samples, although rare transitional forms suggest that these taxa represent ancestor and descendant. I was not certain of this relationship previously, but after considerable discussion with Shilong Mei I have become convinced of this and can see it in the specimens. Furthermore, during our discussions I have become convinced that the end of the Guadalupian marine basin in West Texas is during *J. xuanhanensis* time (= *J. crofti*). These latter two taxa are clearly older than *J. granti*. I believe it is very unlikely that either of these taxa are the direct ancestor to *C. postbitteri*. The time represented by the unconformity above the Altuda Formation is almost certainly equivalent to the time of deposition of the LST/early TST Laibin Limestone. This is why *J. granti* is found only in S. China. It could be argued that the abrupt change from *J. granti* to *C. postbitteri* is indicative of an unconformity and that the breccia could support this (*I* agree with you that the term diastem is very appropriate for this bedding plane contact between 6i lower and upper). Shilong Mei would probably regard this as the correlative conformable surface associated with the G/L sequence boundary on the shelf/platform. I don’t believe that there is any one correlative conformable surface, but rather an interval. However, it seems clear that there is a turn-around in sea level at this point and applying the Transgressive-Regressive sequence model of Embry, this point could be viewed as the beginning of a new sequence in a conformable succession.). We would argue that if it is an unconformity, it is of very small duration at Penglaitan given the lithologic succession and interpreted sequence stratigraphy. I think we are simply seeing very minor sea level fluctuations in “a complete as you can get” LST and early TST succession (the intersequence). I would argue that the sudden change is more indicative of a biotic signature indicating a major evolutionary event (a punctuated event). Previous history of *Jinogondolella* and subsequent history of *Clarkina* is one of transitional morphotypes. I bet that no one can consistently demonstrate the exact point at which *postbitteri* becomes *dukouensis*; Shilong Mei agrees. There is a change, but how do you pick the consistent point of change. An arbitrary point in a morphologic continuum, as is becoming the trend in Permian chronostratigraphy, is exactly that, arbitrary, and almost certainly inconsistent. It is very likely that this *Jinogondolella* to *Clarkina* evolutionary event is triggered or controlled by the lowstand of sea level. Shilong Mei and I believe that the FAD of *C. postbitteri* is the clearest possible boundary position for the Guadalupian/Lopingian boundary in terms of biologic evolution and from a sequence stratigraphic perspective.

Finally, I would like to make it clear that we looked at the samples independently and came to the exact same conclusion that there is no overlap between the two key taxa. The interpretations about evolution are a result of our common discussions. I was initially very reluctant to see *granti* as the ancestor of *postbitteri*, but I have become convinced from our discussions.

*From a later comment by Dr. Henderson in reply to Jin Yugan.

Conodont Definition for the basal boundary of the Changhsingian Stage (Warldaw and Mei)

There is a continuous morpholine expressed by the Pa elements of *Clarkina* in the lower part of the Changxing Limestone that provides an appropriate evolutionary point to define the base of the Changhsingian Stage.

Previously, Mei *et al.* (1998), in an attempt to consolidate the disparate morphologic form taxa that have been identified as “spe-
cies” recognized several assemblage zones within the Changxing Limestone based on the evolving change in denticulation and noting four “shape classes” in each zone. The shapes were round-morphotype, square-morphotype, narrow-morphotype, and transitional morphotype (transitional between square and round). Typically names applied to these morphotypes are “deflecta” for the square-morphotype, “changxingensis” for the round-morphotype, “wangi” for the narrow-morphotype, and “subcarinata” for the transitional morphotype. All four morphotypes are in every sample throughout the entire Changxing Limestone and clearly do not serve as valid species identifiers. Based on the study of many toptotypes to each morphospecies and our abundant new material from the Changxing Limestone, we would like to now abandon these species concepts and base species on the clear evolutionary progression of denticulation in the Pa elements to provide a powerful boundary definition based on a phyletic morphoclone rather than platform outline morphologies that provide little variation throughout the Changxing Limestone.

The evolution of the denticulation in the lower part of the Changxing Limestone can be characterized in adult forms. Lambert (1994) discussed a methodology for using size as a proxy of relative maturity by using carina length in neogondolellid platform elements. Small, juvenile forms generally show more discrete denticles than large, adult forms, and then again, very large, gerontic forms display excessive fusion and commonly pathologic, bizarre characters. The evolution in adult Pa elements of Clarkina shows a highly fused, high carina, with a cusp that is not clearly separated from the carina and in lateral view looks like a high “wall”, that reduces in height posteriorly, denticles become more discrete, and the denticle clearly separates from the carina, showing a posteriorly declining carina and separated cusp in lateral view, and then, further reduces so that the posterior most denticles are completely discrete and depressed and there is a shallow depression in the platform, the cusp is completely separated and the depression that is quite noticeable in lateral view (figure 1). Based on the holotypes of morphospecies we apply the names Clarkina wangi to the forms with the high, wall-like carina, C. subcarinata (sensu strictu) to the forms with the reduced, partially discrete denticles, and separated cusp; and C. changxingensis to the forms with the depressed, discrete denticles, and separated cusp. The succession is an evolutionary continuum and the distinctions of the species can be arbitrarily picked to define an accurate point and definition for the boundary. We pick the point at the first appearance of adult forms with a clearly separated cusp, and partially discrete posterior carinal denticles as the first occurrence of Clarkina subcarinata (sensu strictu) which is at 13.71 m above the base of the Changxing Limestone at the Meishan (D) section, Changxing County, China. It should be noted that the new phylogenetic species concept wholly includes the holotype and toptotypes of Clarkina subcarinata (Sweet).

References

Lambert, L. L., 1994, Morphometric confirmation of the Mesogondolella idahoensis to M. nankingensis transition: Permophiles, no. 24, p. 28-35.
Re: General Management Plan & Environmental Impact Statement for Guadalupe Mt. National Park

Dear Ellis:

We regret that we were at our national geological convention in New Orleans and missed your Park public hearing at Odessa. In addition to the general comments on your enclosed questionnaire, I would like to address some special concerns to geologists, which you are probably already aware of.

1. No collecting of geologic specimens, fossils or rocks should be permitted along the Geology Trail. What has already been sampled should be archived at The Wallace Pratt Ship-On-The-Desert Research Center or at the Texas Bureau of Economic Geology for study by interested geologists. Access to these rock collections could be through the resident NPS Geologist and/or the Park Superintendent.

2. In keeping with NPS rules- rock collecting in the Park by the general public should be prohibited.

3. It is desirable for the rocks of Guadalupe Mountains to be designated as Type Sections for the Middle Permian by the International Commission on Stratigraphy. An important consideration of such designation is that there should be adequate access and adequate sampling of rocks by members of the ISC and its Permian subcommittee. I propose that

A. Future sampling of rocks by, ISC members or any others should be under the supervision of the NPS resident geologist. They certainly should be granted permission to study and sample the Type Sections in Stratotype Canyon and Nipple Butte.

B. The GMNP resident geologist should catalog existing Guadalupian age rock and fossil collections (e.g. by Bruce Wardlaw at the USGS in Reston, Virginia, by Charlie Kerans at the Texas Bureau of Economic Geology in Austin, and by petroleum industry geologists, etc.) Students and other geologists desiring to sample rocks within Park Boundaries should be referred to study these available collections before additional rock sampling is permitted within Park Boundaries. Future sampling by geologists or others who are not members of the ISC should be at the discretion of the Park Superintendent and under the supervision of the resident Park Geologist.

C. Most of the rock formations of the Backreef Facies are present in abundance on BLM land adjacent to GMNP. Most of the rock formations of the Forereef Facies are present on private ranches to the south in Texas. Some reef rock exposures are also present in these areas. Future students and geologists should be encouraged to collect rocks in these areas after securing permission from the BLM office in Carlsbad, New Mexico or from private property owners rather than grant them permission to sample rocks within the boundaries of GMNP.

D. Whether on GMNP, BLM or private land, rock-sampling permits should be denied along highway roadcuts because geologists and professors on fieldtrips use these extensively and constantly where time constraints prohibit the use of more remote outcrops.

4. The GMNP resident geologist should assemble a collection of polished rock samples representative of the major facies of all formations and important stratigraphic sections in the National Park. This collection could be housed in the Wallace Pratt Ship-On-The-Desert Research Center for study by geologists interested in Permian stratigraphy and/or reef, forereef and backreef architecture. If time does not permit the staff geologist to do this, it would be an excellent thesis, dissertation or Summer Ranger project. Industry funding could probably be secured for such an undertaking.

We all recognize that the rocks of the Guadalupe Mountains form one of the world’s greatest textbooks of reef morphology and Permian stratigraphy. It is imperative that vandalism and uncontrolled collecting must not be permitted to mar the outcrops of this textbook. We are pleased that the National Park Service is the custodian and watchdog of this internationally important treasure. We wish you well as you continue the task you are superbly accomplishing on our behalf.

Your Fiend,

Jim W. Adams
Certified Petroleum Geologist #647

Abadeh Section Accessibility

Dear Permophiles Colleagues,

In a very recent communication with the Deputy Director of the Geological Survey of Iran, he said that “Contrary to the statement expressed in item 7, page 24, Permophiles #35, Abadeh Section is universally accessible to every visitor, including “qualified scientists”, and we welcome anybody who is interested to study that Section. Geological Survey of Iran will provide guidance and help, but NOT financial undertaking.”

The interested scientists who want to visit or study Abadeh Section should contact:

Dr. A. Aghanabati
Geological Survey and Mineral Exploration of Iran
P.O. Box 13185-1494
Tehran, IRAN

Sincerely Yours,

Hooshang Taraz, Ph.D.
6836 Hyde Park Dr.9 Apt. A
San Diego, CA 921191 USA
Gentlemen,

First let me state that I am extremely proud of the progress made by SPS in recent years, largely because of our individual and collaborative contributions. The Carboniferous and Permian each have a “roof”, the three Permian series have received initial approval, and the Guadalupian and component stages will go through final approval at the August meeting of IGC in Rio de Janeiro. However, I am most disappointed at our failure to bring the GSSP for the base of the Lopingian to a formal vote. This is especially unfortunate because leadership of ICS will change at the IGC, and we may well lose the type of enthusiastic support offered previously by Jürgen Remane.

The differences in opinion revolve about ONE METER in the Penglaitan section. Cogent arguments have been advanced on each of the several horizons preferred within this interval, and I am familiar with them all. BUT 1m! Irrespective of where the GSSP is placed within this interval, it will be fully functional, and this will remain one of the most intensely studied sections in the world.

My plea to you all is for compromise. With adequate interpersonal relations, we could settle this arbitrarily, progress beyond the mechanics, and move on with the science. I look forward to publication of new comprehensive accounts of the Lopingian sequence, although this will remain an ongoing challenge. But now, let’s reach early agreement on a compromise horizon so that we can then progress to collaborative science focus.

My high esteem and best wishes to each of you

Brian

June 15, 2000

Editorial note:
This letter was submitted by Brian F. Glenister, specifically requesting that the SPS secretary forward it to Charles Henderson, Heinz Koçur, Jin Yugan, H. R. Lane, Shilong Mei, Jürgen Remane, Wang Cheng-yuan, and Bruce Wardlaw and that it be included in this issue of Permophiles. For a response to this letter from Charles Henderson, Jin Yugan and Bruce Wardlaw, see page 3 of this publication.
Oman Pangea Symposium and Field Meeting

Information and Inscription directly on website:
http://www.geoconfoman.unibe.ch/symposium1a.html

On the occasion of the International Conference on the Geology of Oman organised at Sultan Qaboos University, Seeb/Muscat, January 12 to January 16, 2001, an Oman Pangea Symposium and field meeting is scheduled. This Oman Pangea Symposium and field meeting will be co-sponsored by the Global Sedimentary Geology Program (chairman Dr. Benoit Beauchamp), by the International Subcommission on Permain Stratigraphy (chairman Dr. Bruce R. Wardlaw) and by the International Subcommission on Triassic Stratigraphy (chairman Prof. Maurizio Gaetani). The symposium will take place within the Southern Tethys and Arabian Continental Margin topic of the Conference (Prof. Alastair Robertson).

Scientific Organisers of the Symposium and Field Meeting
Dr. Aymon Baud and Prof. Jean Marcoux, with the help of the BRGM and other experts.

Objective
With the presentation of new and recent results on Permian and Triassic sediments of Oman, the aim of the Symposium and the three fieldtrips are to provide a forum to geologists who are interested in the time interval of Pangea for discussing global changes related to Pangea integration, North Gondwana and Central Tethys evolution; It will be an unique opportunity for sedimentologists, stratigraphers and paleontologists who are working within Permian and Triassic time interval, biotic crisis, extinction, recovery and evolution at the Paleozoic-Mesozoic transition to discuss, to look and to sample at the spectacular Permian and Triassic outcrops belonging to the Oman former continental margin, from shallow shelf to deep marine sediments and seamounts. For the petrographo-geochemists, Oman is a key area for the study of the magmatism linked with the Permian Neotethys opening and with the Triassic intra-oceanic seamounts.

General Themes
Pangea and Tethys, moving Plates and environmental Changes.

Secondary Themes
Progress in the Permo-Triassic Stratigraphy and Palaeontology of the Central Tethys and its Gondwana margin.
Comparison between the Permo-Triassic continental margins of Oman, Arabia, Iran, N India (Himalayas) and N Australia.
Further Informations by Aymon Baud, Geological Museum, UNIL-BFSH2, CH-1015 Lausanne, Switzerland, tel.: xx41 21 692 44 71, fax xx41 21 692 44 75, e-mail aymon.baud@sst.unil.ch

Pre-Conference Excursion No. A01
Permo-Triassic Deposits: from the Platform to the Basin and Seamounts
Leaders: A. Baud, F. Bechennec, F. Cordey, L. Krystyn, J. le Métour, J. Marcoux and R. Maury

Dates: January 8 - 11, 2001
Cost: US$500

The mountainous belt located in the eastern part of the Arabian Peninsula, the Oman Mountains, expose a segment of the Gondwanian margin interpreted as a flexural upper plate. During the end of the Cretaceous, this segment was sliced and brought on the Arabian continent with the obduction of the ophiolite, part of the Tethyan ocean. Following a lower Permian rifting phase and middle Permian break-up (birth of the Neotethys), a wide carbonate platform developed during late Permian and Triassic times on the inner part of the margin. This Permian-Triassic sequence is exceptionally well exposed in the Jebel Akhdar Mountains, as part of the «autochthonous» which crops out in a large tectonic window. The Permian and Triassic shallow water carbonate rocks occurring in this area belong to the Akhdar Group, with two main lithologic units: the Saiq and Mahil Formations. The Saiq Formation, about 700 m thick and made up of three transgressive-regressive cycles unconformably overlies Precambrian strata, documenting the upper Permian marine transgression. The following 800 m thick Triassic dolomitic Mahil Formation confirms the cyclic and restricted shallow marine environment upward. Carbonates derived from the platform represented the major source for the thick sequence of slope carbonates deposited near the platform margin. On more distal parts, the basinal and oceanic sedimentation resulted in various types of carbonate, cherts and siliciclastic deposits, presently found in the Hawasina Nappe. Middle Permian radiolarites and red ammonoided limestones as Middle Triassic black marls and limestones deposited on laves are cropping out as blocks of various dimensions, the Oman Olistoliths, both sides of the «autochthonous» tectonic window. Also new results on Permian and Triassic magmatism will be presented.

Spectacular and recently studied outcrops in Wadi Wasit, Ba’id, Aq Quil, Jebel Misfah, Jebel Misht and Jebel Akhdar areas allowed to reconstruct the former geometry of the margin during Late Permian and Triassic times.

Pre-Conference Excursion No. A02
Lower to Middle Permian Sedimentation on the Arabian Platform: the Huqf Area (S. Central Oman) and the Jebel Akhdar (Oman Mountains)
Leaders: L. Angiolini, J. Broutin, S. Crasquin and J.-P. Platel
Dates: January 7 - 11, 2001
Cost: US$625

This excursion will provide a unique opportunity to see and sample the Peri-Gondwanian Permian successions of the Sultanate of Oman. In the spectacular scenarios of the mountains and the desert, different faunal and floral associations and depositional environments from platform to shallow basin will be visited.

Starting in the desert of the Interior Oman, the excursion will visit the Huqf area, a region marked by gentle deformed and uplifted Palaeozoic formations. Here, the Early to Middle Permian is
represented by two mega-sequences separated by a regional unconformity, recording two major transgressive events respectively controlled by the last phase of the Gondwanan deglaciation and by the opening of the Neotethys. The first sequence consists of Lower Permian glacio-lacustrine deposits of the Al Khlata Formation succeeded by the transgressive marine deposits of the Saiwan Formation, marking the complete deglaciation of the region. The latter unit, of late Sakmarian age, yields a rich and well preserved brachiopod (L. Angiolini), bivalve, gastropod, crinoid and bryozoan fauna.

Resting unconformably, the upper sequence is composed at the base of a thick fluvial terrigenous unit, the Gharif Formation. This sequence terminates with the highly fossiliferous [brachiopods, ostracodes, conodonts, bivalves, gastropods, cephalopods, trilobites (L. Angiolini & S. Crasquin)] transgressive marls and bioclastic limestones of the Khuff Formation, of which only the Wordian part, are exposed below the angular unconformity of the Triassic continental Minjur Formation.

The Huqf succession represents a key-section for the intercalibration of Early to Middle Permian marine and continental biostratigraphical scales. In fact, if on one hand the fauna shows a marked transitional character, being represented by cosmopolitan, Gondwanan, Tethyan and endemic taxa, on the other the newly named “Gharif Paleoflora” (J. Broutin) is erected as a standard for the Arabian Peninsula. This warm humid assemblage is of outstanding palaeogeographic significance, because it comprises associated Gondwanan, Cathaysian and Laurasian floral elements.

Moving to the the Oman Mountains, this excursion will examine together with the excursion A01 the Permian succession cropping out in the north-western part of the Jebel Akhdar window, along the Wadi Sahtan. Here, the Permian is represented by the Wordian marine Saiq Formation, lying with a spectacular angular unconformity on the Proterozoic-Lower Paleozoic autochthonous series. The Saiq Formation consists of conglomerates at the base overlain by bioclastic limestones and reef limestones which capped by dolomites. This unit marks the transgression on the newly formed Neotethyan margin.

Post-Conference Excursion No. B01

Permo-Triassic Deposits: from Shallow Water to Base of Slope and Basin

Leaders: A. Baud, F. Bechennec, F. Cordey, and J. Marcoux

Dates: January 17 - 20, 2001

Cost: US$500

The mountainous belt located in the eastern part of the Arabian Peninsula, the Oman Mountains, expose a segment of the Gondwanan margin, interpreted as a flexural upper plate. The Permo-Triassic sequence deposited on the inner part of this margin is exceptionally well exposed in the Saih Hatat Mountains, as part of the «autochthonous» which crops out in a large tectonic window. The Permian and Triassic shallow water carbonate rocks occurring in this area belong to the Saiq and Mahil Formations. The Saiq Formation, about 400 m thick, consists of transgressive - regressive cycles of shallow carbonate and lava flows unconformably overlying Precambrian strata and documenting the upper Permian marine transgression and rift opening. The following Triassic dolomitic Mahil Formation confirms the cyclic and restricted shallow marine environment upward.

Carbonates derived from the platform represented the major source for the thick sequence of slope carbonates (the Sumeini Group) deposited near the platform margin, cropping out in the Sumeini area near the border between Oman and the United Arab Emirates. The lower part of this group (about 1700 m thick) is included in the Maqam Formation, late Permian to late Triassic in age. Key section of the Oman margin architecture, the Wadi Maqam has been re-investigated in terms of biochronology, sequence and isotope stratigraphy. On more distal parts, the basinal and oceanic sedimentation resulted in various types of carbonate, cherts and siliciclastic deposits, presently found in the Hawasina Nappe. Middle Permian radiolarites and red ammonoides limestones as Middle Triassic black marls and limestones deposited on lavas are cropping out as blocks of various dimensions, the Oman Olistoliths, both sides of the «autochthonous» tectonic window. Also new results on Permian and Triassic magmatism will be presented.

Spectacular and well studied outcrops in Saih Hatat Rustaq, Buday’ah Wadi Maqam and Jebel Sumeini areas allowed to reconstruct the former geometry of the margin during Late Permian and Triassic times.

Excursions Information and Inscription directly on web site:
http://www.geoconforman.unibe.ch

Further Information:
Aymon Baud
Geological Museum
UNIL-BFSH2, CH-1015 Lausanne, Switzerland
tel.: xx41 21 692 44 71, fax xx41 21 692 44 75, e-mail aymon.baud@sst.unil.ch
31st International Geological Congress

International Standard References for the Permian System: Cisuralian of Southern Ural Mountains, Guadalupian of Southwestern North America, Lopingian of South China

Convener: Tamra A. Schiappa (BSU), Bruce R. Wardlaw (USGS), and Brian F. Glenister (University of Iowa)

Date: August 6th through 17th, 2000
Venue: Riocentro Convention Center
Rio de Janeiro - Brazil

Subject: The International Commission on Stratigraphy and Subcommission on Permian Stratigraphy is sponsoring an international symposium at the 31st IGC meeting in Rio. The symposium will highlight progress on final recommendations for Permian series and stage definitions. The symposium will consist of a poster session highlighting all the volunteered contributions (afternoon) followed by an oral session with the convener’s address and 5 keynote presentations. The keynote speakers selected are:
- Boris Chuvashov presenting “Cisuralian (Lower Permian) Series: History, Current Status and Proposed Stage Definitions”
- Brian Glenister presenting, “Guadalupian Series: International Standard for the Middle Permian”
- Heinz Kozur presenting “Importance of Different Microfaunas for Definition and Correlation of Permian Stage Boundaries”
- John Utting presenting “Palynostratigraphic Correlation and Dating of Marine and Continental Permian Successions”. Proceedings of the symposium will be published as a special issue on the Permian System.

Permophiles #37 will contain extended abstracts of all the papers presented at the SPS symposium.

International Subcommission on Stratigraphic Classification of IUGS International Commission on Stratigraphy

INTERNATIONAL STRATIGRAPHIC GUIDE
AN ABRIDGED VERSION
Edited by Michael A. Murphy and Amos Salvador
Covered Reprint
Episodes, December 1999
Volume 22, No. 4, pp. 255-271

The second edition of the International Stratigraphic Guide (1994) made a significant contribution to international agreement on the principles of stratigraphic classification, terminology, and procedure, and to improve communication and understanding of these principles worldwide.

Despite the wide acceptance and distribution of the second edition of the Guide, stratigraphers and students of stratigraphy around the world have reported difficulties in getting access to the full Guide mainly for reasons of non-availability or cost. This Abridged Version is an attempt to overcome these difficulties.

The Abridged Version is not a revision of the substance of the Guide; all essential tenets of the full second edition concerning stratigraphic classification, terminology, and procedures have been retained. The same organizational framework, to the level of chapters, headings, and subheadings, has been maintained, so that the user can readily refer to the full version of the Guide for more complete information.

The principal victims of the abridgement have been some explanatory text, examples of stratigraphic procedures, the Glossary of Stratigraphic Terms, the List of National or Regional Stratigraphic Codes and the extensive Bibliography of Stratigraphic Classification, Terminology, and Procedure.

Order Now!
Price: US$5.00 including postage and handling

Where to order:

Episodes
P.O. Box 823, 26 Baiwanzhuang Road,
100037 Beijing, CHINA
Tel: 86-10-6832-7772. Fax: 86-10-6832-8928
E-mail: episodes@public2.bta.net.cn
Prepayment required. Major credit cards accepted.

Perminophiles Issue #36 2000